Efficient and relevant stepwise covariate model building for pharmacometrics

Abstract Covariate modeling is an important opportunity for pharmacometrics to influence decision making in drug development. The stepwise covariate model (SCM) building procedure is the most common method for covariate model development. Despite its advantages, the traditional SCM method is known t...

Full description

Saved in:
Bibliographic Details
Main Authors: Robin J. Svensson (Author), E. Niclas Jonsson (Author)
Format: Book
Published: Wiley, 2022-09-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_f3ee0c51c17742928f9ef566f45fe35b
042 |a dc 
100 1 0 |a Robin J. Svensson  |e author 
700 1 0 |a E. Niclas Jonsson  |e author 
245 0 0 |a Efficient and relevant stepwise covariate model building for pharmacometrics 
260 |b Wiley,   |c 2022-09-01T00:00:00Z. 
500 |a 2163-8306 
500 |a 10.1002/psp4.12838 
520 |a Abstract Covariate modeling is an important opportunity for pharmacometrics to influence decision making in drug development. The stepwise covariate model (SCM) building procedure is the most common method for covariate model development. Despite its advantages, the traditional SCM method is known to have long runtimes and the suboptimal ability to select relevant covariates, especially in more complex phase III settings. In this work, two alternative approaches are presented: SCM+, which introduces the "adaptive scope reduction" and changes to general estimation settings, and "stage‐wise filtering," which groups covariates into categories based on their importance (mechanistic, structural, and exploratory). The three methods (SCM, SCM+, and SCM+ with stage‐wise filtering) are applied to data from a simulated phase III population pharmacokinetic study and are compared in terms of efficiency and relevance. The two SCM+ methods were considerably more efficient than the traditional SCM: the number of function evaluations was reduced by 70% for SCM+ and by 76% for SCM+ with stage‐wise filtering compared to SCM; the corresponding number of executed models was reduced by 44% for SCM+ and 70% for SCM+ with stage‐wise filtering. In addition, among the three methods, SCM+ with stage‐wise filtering selected the highest number of relevant covariates. Given the improved efficiency and ability to select relevant covariates shown in this work, the use of SCM+ and stage‐wise filtering can greatly increase the efficiency of covariate modeling in drug development, which will ultimately facilitate more timely support for decision making. 
546 |a EN 
690 |a Therapeutics. Pharmacology 
690 |a RM1-950 
655 7 |a article  |2 local 
786 0 |n CPT: Pharmacometrics & Systems Pharmacology, Vol 11, Iss 9, Pp 1210-1222 (2022) 
787 0 |n https://doi.org/10.1002/psp4.12838 
787 0 |n https://doaj.org/toc/2163-8306 
856 4 1 |u https://doaj.org/article/f3ee0c51c17742928f9ef566f45fe35b  |z Connect to this object online.