PKCε-dependent potentiation of TTX-resistant Na<sub>v</sub>1.8 current by neurokinin-1 receptor activation in rat dorsal root ganglion neurons

<p>Abstract</p> <p>Background</p> <p>Substance P (SP), which mainly exists in a subtype of small-diameter dorsal root ganglion (DRG) neurons, is an important signal molecule in pain processing in the spinal cord. Our previous results have proved the expression of SP rec...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhao Zhi-Qi (Author), Zhang Yu-Qiu (Author), Zhang Hua (Author), Cang Chun-Lei (Author)
Format: Book
Published: SAGE Publishing, 2009-06-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:<p>Abstract</p> <p>Background</p> <p>Substance P (SP), which mainly exists in a subtype of small-diameter dorsal root ganglion (DRG) neurons, is an important signal molecule in pain processing in the spinal cord. Our previous results have proved the expression of SP receptor neurokinin-1 (NK-1) on DRG neurons and its interaction with transient receptor potential vanilloid 1 (TRPV1) receptor.</p> <p>Results</p> <p>In this study we investigated the effect of NK-1 receptor agonist on Na<sub>v</sub>1.8, a tetrodotoxin (TTX)-resistant sodium channel, in rat small-diameter DRG neurons employing whole-cell patch clamp recordings. NK-1 agonist [Sar<sup>9</sup>, Met(O<sub>2</sub>)<sup>11</sup>]-substance P (Sar-SP) significantly enhanced the Na<sub>v</sub>1.8 currents in a subgroup of small-diameter DRG neurons under both the normal and inflammatory situation, and the enhancement was blocked by NK-1 antagonist Win51708 and protein kinase C (PKC) inhibitor bisindolylmaleimide (BIM), but not the protein kinase A (PKA) inhibitor H89. In particular, the inhibitor of PKCε, a PKC isoform, completely blocked this effect. Under current clamp model, Sar-SP reduced the amount of current required to evoke action potentials and increased the firing rate in a subgroup of DRG neurons.</p> <p>Conclusion</p> <p>These data suggest that activation of NK-1 receptor potentiates Na<sub>v</sub>1.8 sodium current via PKCε-dependent signaling pathway, probably participating in the generation of inflammatory hyperalgesia.</p>
Item Description:10.1186/1744-8069-5-33
1744-8069