Artificial intelligence (AI) for tumor microenvironment (TME) and tumor budding (TB) identification in colorectal cancer (CRC) patients: A systematic review

Evaluation of the parameters such as tumor microenvironment (TME) and tumor budding (TB) is one of the most important steps in colorectal cancer (CRC) diagnosis and cancer development prognosis. In recent years, artificial intelligence (AI) has been successfully used to solve such problems. In this...

ver descrição completa

Na minha lista:
Detalhes bibliográficos
Principais autores: Olga Andreevna Lobanova (Autor), Anastasia Olegovna Kolesnikova (Autor), Valeria Aleksandrovna Ponomareva (Autor), Ksenia Andreevna Vekhova (Autor), Anaida Lusparonovna Shaginyan (Autor), Alisa Borisovna Semenova (Autor), Dmitry Petrovich Nekhoroshkov (Autor), Svetlana Evgenievna Kochetkova (Autor), Natalia Valeryevna Kretova (Autor), Alexander Sergeevich Zanozin (Autor), Maria Alekseevna Peshkova (Autor), Natalia Borisovna Serezhnikova (Autor), Nikolay Vladimirovich Zharkov (Autor), Evgeniya Altarovna Kogan (Autor), Alexander Alekseevich Biryukov (Autor), Ekaterina Evgenievna Rudenko (Autor), Tatiana Alexandrovna Demura (Autor)
Formato: Livro
Publicado em: Elsevier, 2024-12-01T00:00:00Z.
Assuntos:
Acesso em linha:Connect to this object online.
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_f7c8ab7a3c294cefb5801a78a0a569d0
042 |a dc 
100 1 0 |a Olga Andreevna Lobanova  |e author 
700 1 0 |a Anastasia Olegovna Kolesnikova  |e author 
700 1 0 |a Valeria Aleksandrovna Ponomareva  |e author 
700 1 0 |a Ksenia Andreevna Vekhova  |e author 
700 1 0 |a Anaida Lusparonovna Shaginyan  |e author 
700 1 0 |a Alisa Borisovna Semenova  |e author 
700 1 0 |a Dmitry Petrovich Nekhoroshkov  |e author 
700 1 0 |a Svetlana Evgenievna Kochetkova  |e author 
700 1 0 |a Natalia Valeryevna Kretova  |e author 
700 1 0 |a Alexander Sergeevich Zanozin  |e author 
700 1 0 |a Maria Alekseevna Peshkova  |e author 
700 1 0 |a Natalia Borisovna Serezhnikova  |e author 
700 1 0 |a Nikolay Vladimirovich Zharkov  |e author 
700 1 0 |a Evgeniya Altarovna Kogan  |e author 
700 1 0 |a Alexander Alekseevich Biryukov  |e author 
700 1 0 |a Ekaterina Evgenievna Rudenko  |e author 
700 1 0 |a Tatiana Alexandrovna Demura  |e author 
245 0 0 |a Artificial intelligence (AI) for tumor microenvironment (TME) and tumor budding (TB) identification in colorectal cancer (CRC) patients: A systematic review 
260 |b Elsevier,   |c 2024-12-01T00:00:00Z. 
500 |a 2153-3539 
500 |a 10.1016/j.jpi.2023.100353 
520 |a Evaluation of the parameters such as tumor microenvironment (TME) and tumor budding (TB) is one of the most important steps in colorectal cancer (CRC) diagnosis and cancer development prognosis. In recent years, artificial intelligence (AI) has been successfully used to solve such problems. In this paper, we summarize the latest data on the use of artificial intelligence to predict tumor microenvironment and tumor budding in histological scans of patients with colorectal cancer. We performed a systematic literature search using 2 databases (Medline and Scopus) with the following search terms: (''tumor microenvironment'' OR ''tumor budding'') AND (''colorectal cancer'' OR CRC) AND (''artificial intelligence'' OR ''machine learning '' OR ''deep learning''). During the analysis, we gathered from the articles performance scores such as sensitivity, specificity, and accuracy of identifying TME and TB using artificial intelligence. The systematic review showed that machine learning and deep learning successfully cope with the prediction of these parameters. The highest accuracy values in TB and TME prediction were 97.7% and 97.3%, respectively. This review led us to the conclusion that AI platforms can already be used as diagnostic aids, which will greatly facilitate the work of pathologists in detection and estimation of TB and TME as instruments and second-opinion services. A key limitation in writing this systematic review was the heterogeneous use of performance metrics for machine learning models by different authors, as well as relatively small datasets used in some studies. 
546 |a EN 
690 |a Colorectal cancer 
690 |a Systematic review 
690 |a Tumor microenvironment 
690 |a Tumor budding 
690 |a Artificial intelligence 
690 |a Computer applications to medicine. Medical informatics 
690 |a R858-859.7 
690 |a Pathology 
690 |a RB1-214 
655 7 |a article  |2 local 
786 0 |n Journal of Pathology Informatics, Vol 15, Iss , Pp 100353- (2024) 
787 0 |n http://www.sciencedirect.com/science/article/pii/S2153353923001670 
787 0 |n https://doaj.org/toc/2153-3539 
856 4 1 |u https://doaj.org/article/f7c8ab7a3c294cefb5801a78a0a569d0  |z Connect to this object online.