EEG Conformer: Convolutional Transformer for EEG Decoding and Visualization

Due to the limited perceptual field, convolutional neural networks (CNN) only extract local temporal features and may fail to capture long-term dependencies for EEG decoding. In this paper, we propose a compact Convolutional Transformer, named EEG Conformer, to encapsulate local and global features...

Full description

Saved in:
Bibliographic Details
Main Authors: Yonghao Song (Author), Qingqing Zheng (Author), Bingchuan Liu (Author), Xiaorong Gao (Author)
Format: Book
Published: IEEE, 2023-01-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_f85d2769b12c404aa18b64e296f93591
042 |a dc 
100 1 0 |a Yonghao Song  |e author 
700 1 0 |a Qingqing Zheng  |e author 
700 1 0 |a Bingchuan Liu  |e author 
700 1 0 |a Xiaorong Gao  |e author 
245 0 0 |a EEG Conformer: Convolutional Transformer for EEG Decoding and Visualization 
260 |b IEEE,   |c 2023-01-01T00:00:00Z. 
500 |a 1558-0210 
500 |a 10.1109/TNSRE.2022.3230250 
520 |a Due to the limited perceptual field, convolutional neural networks (CNN) only extract local temporal features and may fail to capture long-term dependencies for EEG decoding. In this paper, we propose a compact Convolutional Transformer, named EEG Conformer, to encapsulate local and global features in a unified EEG classification framework. Specifically, the convolution module learns the low-level local features throughout the one-dimensional temporal and spatial convolution layers. The self-attention module is straightforwardly connected to extract the global correlation within the local temporal features. Subsequently, the simple classifier module based on fully-connected layers is followed to predict the categories for EEG signals. To enhance interpretability, we also devise a visualization strategy to project the class activation mapping onto the brain topography. Finally, we have conducted extensive experiments to evaluate our method on three public datasets in EEG-based motor imagery and emotion recognition paradigms. The experimental results show that our method achieves state-of-the-art performance and has great potential to be a new baseline for general EEG decoding. The code has been released in <uri>https://github.com/eeyhsong/EEG-Conformer</uri>. 
546 |a EN 
690 |a EEG classification 
690 |a self-attention 
690 |a transformer 
690 |a brain-computer interface (BCI) 
690 |a motor imagery 
690 |a Medical technology 
690 |a R855-855.5 
690 |a Therapeutics. Pharmacology 
690 |a RM1-950 
655 7 |a article  |2 local 
786 0 |n IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol 31, Pp 710-719 (2023) 
787 0 |n https://ieeexplore.ieee.org/document/9991178/ 
787 0 |n https://doaj.org/toc/1558-0210 
856 4 1 |u https://doaj.org/article/f85d2769b12c404aa18b64e296f93591  |z Connect to this object online.