The mechanism and pharmacodynamics of 2-((1H-indol-3-yl)thio/sulfinyl)-N-pheny acetamide derivative as a novel inhibitor against human respiratory syncytial virus

Human respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infection worldwide. Until now, there are no licenced vaccines or effective antiviral drugs against RSV infections. In our previous work, we found 2-((1H-indol-3-yl)thio/sulfinyl)-N-pheny acetamide derivatives (4-4...

Full description

Saved in:
Bibliographic Details
Main Authors: Ningning Cheng (Author), Nan Jiang (Author), Yuanhui Fu (Author), Zhuxin Xu (Author), Xianglei Peng (Author), Jiemei Yu (Author), Shan Cen (Author), Yucheng Wang (Author), Guoning Zhang (Author), Yanpeng Zheng (Author), Jinsheng He (Author)
Format: Book
Published: Taylor & Francis Group, 2022-12-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Human respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infection worldwide. Until now, there are no licenced vaccines or effective antiviral drugs against RSV infections. In our previous work, we found 2-((1H-indol-3-yl)thio/sulfinyl)-N-pheny acetamide derivatives (4-49 C and 1-HB-63) being a novel inhibitor against RSV in vitro. Here, we explored the underlying mechanism of 2-((1H-indol-3-yl)thio/sulfinyl)-N-pheny acetamide derivatives to inhibit RSV replication in vitro and disclosed that 4-49 C worked as the inhibitor of membrane fusion and 1-HB-63 functioned at the stage of RSV genome replication/transcription. Yet, both of them could not inhibit RSV infection of BALB/c mice by using RSV-Luc, in vivo imaging and RT-qPCR analyses, for which it may be due to the fast metabolism in vivo. Our work suggests that further structural modification and optimisation of 2-((1H-indol-3-yl) thio/sulfinyl)-N-pheny acetamide derivative are needed to obtain drug candidates with effective anti-RSV activities in vivo.
Item Description:10.1080/14756366.2022.2123804
1475-6374
1475-6366