Statistical analysis and data mining of digital reconstructions of dendritic morphologies

Neuronal morphology is diverse among animal species, developmental stages, brain regions, and cell types. The geometry of individual neurons also varies substantially even within the same cell class. Moreover, specific histological, imaging, and reconstruction methodologies can differentially affect...

Full description

Saved in:
Bibliographic Details
Main Authors: Sridevi ePolavaram (Author), Todd A Gillette (Author), Ruchi eParekh (Author), Giorgio eAscoli (Author)
Format: Book
Published: Frontiers Media S.A., 2014-12-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_fa324a40a0034170b4d74c52e24aaa63
042 |a dc 
100 1 0 |a Sridevi ePolavaram  |e author 
700 1 0 |a Todd A Gillette  |e author 
700 1 0 |a Ruchi eParekh  |e author 
700 1 0 |a Giorgio eAscoli  |e author 
245 0 0 |a Statistical analysis and data mining of digital reconstructions of dendritic morphologies 
260 |b Frontiers Media S.A.,   |c 2014-12-01T00:00:00Z. 
500 |a 1662-5129 
500 |a 10.3389/fnana.2014.00138 
520 |a Neuronal morphology is diverse among animal species, developmental stages, brain regions, and cell types. The geometry of individual neurons also varies substantially even within the same cell class. Moreover, specific histological, imaging, and reconstruction methodologies can differentially affect morphometric measures. The quantitative characterization of neuronal arbors is necessary for in-depth understanding of the structure-function relationship in nervous systems. The large collection of community-contributed digitally reconstructed neurons available at NeuroMorpho.Org constitutes a big data research opportunity for neuroscience discovery beyond the approaches typically pursued in single laboratories. To illustrate these potential and related challenges, we present a database-wide statistical analysis of dendritic arbors enabling the quantification of major morphological similarities and differences across broadly adopted metadata categories. Furthermore, we adopt a complementary unsupervised approach based on clustering and dimensionality reduction to identify the main morphological parameters leading to the most statistically informative structural classification. We find that specific combinations of measures related to branching density, overall size, tortuosity, bifurcation angles, arbor flatness, and topological asymmetry can capture anatomically and functionally relevant features of dendritic trees. The reported results only represent a small fraction of the relationships available for data exploration and hypothesis testing enabled by digital sharing of morphological reconstructions. 
546 |a EN 
690 |a neuroinformatics 
690 |a Cluster analysis 
690 |a NeuroMorpho.Org 
690 |a L-Measure 
690 |a dendritic topology 
690 |a cellular neuroanatomy 
690 |a Neurosciences. Biological psychiatry. Neuropsychiatry 
690 |a RC321-571 
690 |a Human anatomy 
690 |a QM1-695 
655 7 |a article  |2 local 
786 0 |n Frontiers in Neuroanatomy, Vol 8 (2014) 
787 0 |n http://journal.frontiersin.org/Journal/10.3389/fnana.2014.00138/full 
787 0 |n https://doaj.org/toc/1662-5129 
856 4 1 |u https://doaj.org/article/fa324a40a0034170b4d74c52e24aaa63  |z Connect to this object online.