Synthesis, Molecular Docking and Anticancer Activity of Novel 1,3-Thiazolidin-4-Ones
Background: Cancer is a major cause of death all over the globe. Controlling cell division byinhibition of mitosis is the most successful clinical strategy for cancer treatment. The developmentof novel anticancer agents is the most important area in medicinal chemistry and drug discoveryresearch. Th...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Book |
Published: |
Tabriz University of Medical Sciences,
2021-09-01T00:00:00Z.
|
Subjects: | |
Online Access: | Connect to this object online. |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background: Cancer is a major cause of death all over the globe. Controlling cell division byinhibition of mitosis is the most successful clinical strategy for cancer treatment. The developmentof novel anticancer agents is the most important area in medicinal chemistry and drug discoveryresearch. Thiazolidine is the multifunctional nucleus which shows a number of pharmacologicalactivities like anticancer, anti-inflammatory, antioxidant, antibacterial, antifungal, antidiabetic,antihyperlipidemic and antiarthritic. Methods: In a present study series of 2-substituted-3-(1H-benzimidazole-2-yl)-thiazolidin-4-ones were designed, synthesized by the microwave-assisted system, and characterized bymelting point, IR, 1H NMR, and mass spectroscopy. All the newly synthesized compoundswere examined for their in vitro anticancer activity against breast cancer cell line MCF-7 bySulforhodamine B (SRB) assay. Results: The compounds AB-12 (GI50: 28.5 μg/ml) and AB-6 (GI50: 50.7 μg/ml) exhibitedsignificant cell growth inhibitory activity. Conclusion: These results indicate that compound AB-12 and AB-6 as related polo-like kinase1inhibitors compounds could be lead compounds for further development of anticanceragents. |
---|---|
Item Description: | 2383-2886 10.34172/PS.2020.95 |