TJ-17 (Goreisan) mitigates renal fibrosis in a mouse model of folic acid-induced chronic kidney disease

Background and purpose: TJ-17 (Goreisan), a traditional Japanese Kampo medicine, has been generally used to treat edema, such as heart failure, due to its diuretic effect. In the present study, we investigate the effects of TJ-17 on chronic kidney disease (CKD). Methods: We the preventive action of...

Full description

Saved in:
Bibliographic Details
Main Authors: Aoi Suenaga (Author), Yasuyuki Seto (Author), Masafumi Funamoto (Author), Masaki Imanishi (Author), Koichiro Tsuchiya (Author), Yasumasa Ikeda (Author)
Format: Book
Published: Elsevier, 2023-09-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background and purpose: TJ-17 (Goreisan), a traditional Japanese Kampo medicine, has been generally used to treat edema, such as heart failure, due to its diuretic effect. In the present study, we investigate the effects of TJ-17 on chronic kidney disease (CKD). Methods: We the preventive action of TJ-17 against acute kidney injury (AKI) transition to CKD in vivo using a folic acid (FA)-induced mouse model. Mice were treated with food containing TJ-17 at 48 h after FA intraperitoneal injection (AKI phase). Results: Histological analysis, as well as renal function and renal injury markers, deteriorated in mice with FA-induced CKD and were ameliorated by TJ-17 treatment. Increased levels of inflammatory cytokines and macrophage infiltration were also alleviated in mice treated with TJ-17. Renal fibrosis, a crucial factor in CKD, was induced by FA administration and inhibited by TJ-17 treatment. Pretreatment with TJ-17 did not exert an inhibitory effect on FA-induced AKI. The increase in urinary volume in FA-induced CKD mice was ameliorated by TJ-17 treatment, with a concurrent correction of reduced aquaporins expression in the kidney. Conclusion: TJ-17 may have a novel preventive effect against inflammation, oxidative stress, and fibrosis, contributing to innovation in the treatment of CKD.
Item Description:1347-8613
10.1016/j.jphs.2023.07.001