Cellular reduction and pulp fibrosis can be related not only to aging process but also to a physiologic static compression

Introduction: As the available space inside the tooth becomes smaller because of the continuous formation of secondary dentin, the pulp may suffer from a physiologic static compression. The hypothesis: The dental pulp is lifelong under a static compression because of the continuous formation of seco...

Full description

Saved in:
Bibliographic Details
Main Authors: Firas Kabartai (Author), Thomas Hoffman (Author), Christian Hannig (Author)
Format: Book
Published: Wolters Kluwer Medknow Publications, 2017-01-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Introduction: As the available space inside the tooth becomes smaller because of the continuous formation of secondary dentin, the pulp may suffer from a physiologic static compression. The hypothesis: The dental pulp is lifelong under a static compression because of the continuous formation of secondary dentin, so that both cellular reduction and pulp fibrosis can also represent adaptive changes caused by the compression. Evaluation of the Hypothesis: The physiologic compression of the dental pulp can lead not only to the development of a hypoxia followed by cell death but also to the development of excluded volume effect, which helps convert the procollagen into collagen and form a collagen fiber network.
Item Description:2155-8213
10.4103/2155-8213.206105