Evolution of a concept with enzymatic debridement and autologous in situ cell and platelet-rich fibrin therapy (BroKerF)

Background Deep partial-thickness burns are traditionally treated by tangential excision and split thickness skin graft (STSG) coverage. STSGs create donor site morbidity and increase the wound surface in burn patients. Herein, we present a novel concept consisting of enzymatic debridement of deep p...

Full description

Saved in:
Bibliographic Details
Main Authors: Matthias Waldner (Author), Tarek Ismail (Author), Alexander Lunger (Author), Holger J Klein (Author), Riccardo Schweizer (Author), Oramary Alan (Author), Tabea Breckwoldt (Author), Pietro Giovanoli (Author), Jan A Plock (Author)
Format: Book
Published: SAGE Publishing, 2022-01-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_fdb0ef2465d847abb1eef1383f290d78
042 |a dc 
100 1 0 |a Matthias Waldner  |e author 
700 1 0 |a Tarek Ismail  |e author 
700 1 0 |a Alexander Lunger  |e author 
700 1 0 |a Holger J Klein  |e author 
700 1 0 |a Riccardo Schweizer  |e author 
700 1 0 |a Oramary Alan  |e author 
700 1 0 |a Tabea Breckwoldt  |e author 
700 1 0 |a Pietro Giovanoli  |e author 
700 1 0 |a Jan A Plock  |e author 
245 0 0 |a Evolution of a concept with enzymatic debridement and autologous in situ cell and platelet-rich fibrin therapy (BroKerF) 
260 |b SAGE Publishing,   |c 2022-01-01T00:00:00Z. 
500 |a 2059-5131 
500 |a 10.1177/20595131211052394 
520 |a Background Deep partial-thickness burns are traditionally treated by tangential excision and split thickness skin graft (STSG) coverage. STSGs create donor site morbidity and increase the wound surface in burn patients. Herein, we present a novel concept consisting of enzymatic debridement of deep partial-thickness burns followed by co-delivery of autologous keratinocyte suspension and plated-rich fibrin (PRF) or fibrin glue. Material and methods In a retrospective case study, patients with deep partial-thickness burns treated with enzymatic debridement and autologous cell therapy combined with PRF or fibrin glue (BroKerF) between 2017 and 2018 were analysed. BroKerF was applied to up to 15% total body surface area (TBSA); larger injuries were combined with surgical excision and skin grafting. Exclusion criteria were age <18 or >70 years, I°, IIa°-only, III° burns and loss of follow-up. Results A total of 20 patients with burn injuries of 16.8% ± 10.3% TBSA and mean Abbreviated Burn Severity Score 5.45 ± 1.8 were identified. Of the patients, 65% (n = 13) were treated with PRF, while 35% (n = 7) were treated with fibrin glue. The mean area treated with BroKerF was 7.5% ± 0.05% TBSA, mean time to full epithelialization was 21.06 ± 9.2 days and mean hospitalization time was 24.7 ± 14.4 days. Of the patients, 35% (n = 7) needed additional STSG, 43% (n = 3) of whom had biopsy-proven wound infections. Conclusion BroKerF is an innovative treatment strategy, which, in our opinion, will show its efficacy when higher standardization is achieved. The combination of selective debridement and autologous skin cells in a fibrin matrix combines regenerative measures for burn treatment. Lay Summary Patients suffering from large burn wounds often require the use of large skin grafts to bring burned areas to heal. Before the application of skin grafts, the burned skin must be removed either by surgery or using enzymatic agents. In this article, we describe a method where small areas of skin are taken and skin cells are extracted and sprayed on wound areas that were treated with an enzymatic agent. The cells are held in place by a substance extracted from patients' blood (PRF) that is sprayed on the wound together with the skin cells. We believe this technique can be helpful to reduce the need of skin grafts in burned patients and improve the healing process. 
546 |a EN 
690 |a Dermatology 
690 |a RL1-803 
690 |a Surgery 
690 |a RD1-811 
655 7 |a article  |2 local 
786 0 |n Scars, Burns & Healing, Vol 8 (2022) 
787 0 |n https://doi.org/10.1177/20595131211052394 
787 0 |n https://doaj.org/toc/2059-5131 
856 4 1 |u https://doaj.org/article/fdb0ef2465d847abb1eef1383f290d78  |z Connect to this object online.