A Bioassay-Based Approach for the Batch-To-Batch Consistency Evaluation of Xuesaitong Injection on a Zebrafish Thrombosis Model

Quality control of Chinese medicine (CM) is mainly based on chemical testing, which sometimes shows weak correlation to pharmacological effects. Thus, there is a great demand to establish bioactivity-based assays to ensure the quality of CM. The aim of the present study was to establish a bioassay-b...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiangwei Ma (Author), Yanyu Chen (Author), Shumin Jiang (Author), Xiaoping Zhao (Author)
Format: Book
Published: Frontiers Media S.A., 2021-03-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_fe31d09b6485406ca906eda0f2b244d6
042 |a dc 
100 1 0 |a Xiangwei Ma  |e author 
700 1 0 |a Yanyu Chen  |e author 
700 1 0 |a Shumin Jiang  |e author 
700 1 0 |a Xiaoping Zhao  |e author 
700 1 0 |a Xiaoping Zhao  |e author 
245 0 0 |a A Bioassay-Based Approach for the Batch-To-Batch Consistency Evaluation of Xuesaitong Injection on a Zebrafish Thrombosis Model 
260 |b Frontiers Media S.A.,   |c 2021-03-01T00:00:00Z. 
500 |a 1663-9812 
500 |a 10.3389/fphar.2021.623533 
520 |a Quality control of Chinese medicine (CM) is mainly based on chemical testing, which sometimes shows weak correlation to pharmacological effects. Thus, there is a great demand to establish bioactivity-based assays to ensure the quality of CM. The aim of the present study was to establish a bioassay-based approach to evaluate the biological activity of Xuesaitong injection (XST) based on an in vivo zebrafish model. Zebrafish larvae with arachidonic acid (AA)-induced thrombus were applied to evaluate anti-thrombosis effects of XST and explore the potential mechanism of XST. Analysis of major components in normal and abnormal XST samples was performed by high performance liquid chromatography (HPLC). The results indicate that XST could significantly restore heart red blood cells (RBCs) intensity of thrombotic zebrafish in a dose-dependent manner, whilst decreasing RBCs accumulation in the caudal vein. The results were confirmed using a green fluorescence protein (GFP)-labeled zebrafish thrombosis model. Moreover, we could show that XST downregulates the expression of the fibrinogen alpha chain (fga) gene to inhibit the coagulation cascade during the process of thrombosis in zebrafish. Notoginsenoside R1, ginsenoside Rg1, ginsenoside Rb1 and ginsenoside Rd, which were considered to be the major components of XST, also showed moderate anti-thrombosis efficacy. Further results showed that the zebrafish thrombosis model could efficiently distinguish five abnormal batches of XST from 24 normal batches. Furthermore, the inhibition rates of different batches were correlated with the content level of major components. Our results suggested that the proposed zebrafish thrombosis model could be successfully used to evaluate the batch-to-batch consistency of XST, which provided an alternative way for the quality control of CM. 
546 |a EN 
690 |a Chinese medicine 
690 |a zebrafish thrombosis model 
690 |a batch-to-batch consistency 
690 |a Xuesaitong injection 
690 |a quality control 
690 |a Therapeutics. Pharmacology 
690 |a RM1-950 
655 7 |a article  |2 local 
786 0 |n Frontiers in Pharmacology, Vol 12 (2021) 
787 0 |n https://www.frontiersin.org/articles/10.3389/fphar.2021.623533/full 
787 0 |n https://doaj.org/toc/1663-9812 
856 4 1 |u https://doaj.org/article/fe31d09b6485406ca906eda0f2b244d6  |z Connect to this object online.