An introduction to causal inference for pharmacometricians
Abstract As formal causal inference begins to play a greater role in disciplines that intersect with pharmacometrics, such as biostatistics, epidemiology, and artificial intelligence/machine learning, pharmacometricians may increasingly benefit from a basic fluency in foundational causal inference c...
Tallennettuna:
Päätekijät: | James A. Rogers (Tekijä), Hugo Maas (Tekijä), Alejandro Pérez Pitarch (Tekijä) |
---|---|
Aineistotyyppi: | Kirja |
Julkaistu: |
Wiley,
2023-01-01T00:00:00Z.
|
Aiheet: | |
Linkit: | Connect to this object online. |
Tagit: |
Lisää tagi
Ei tageja, Lisää ensimmäinen tagi!
|
Samankaltaisia teoksia
-
Estimands-What they are and why they are important for pharmacometricians
Tekijä: Mouna Akacha, et al.
Julkaistu: (2021) -
Causa Nostra: The Potentially Legitimate Business of Drawing Causal Inferences From Observational Data
Tekijä: James A. Rogers
Julkaistu: (2019) -
Elements of Causal Inference Foundations and Learning Algorithms
Tekijä: Peters, Jonas
Julkaistu: (2017) -
Requirements, expectations, challenges and opportunities associated with training the next generation of pharmacometricians
Tekijä: Stephan Schmidt, et al.
Julkaistu: (2023) -
Causal Inference for Heterogeneous Data and Information Theory
Julkaistu: (2023)