Tensor Network Contractions Methods and Applications to Quantum Many-Body Systems

Tensor network is a fundamental mathematical tool with a huge range of applications in physics, such as condensed matter physics, statistic physics, high energy physics, and quantum information sciences. This open access book aims to explain the tensor network contraction approaches in a systematic...

Ful tanımlama

Kaydedildi:
Detaylı Bibliyografya
Yazar: Ran, Shi-Ju (auth)
Diğer Yazarlar: Tirrito, Emanuele (auth), Peng, Cheng (auth), Chen, Xi (auth), Tagliacozzo, Luca (auth), Su, Gang (auth), Lewenstein, Maciej (auth)
Materyal Türü: Elektronik Kitap Bölümü
Dil:İngilizce
Baskı/Yayın Bilgisi: Cham Springer Nature 2020
Seri Bilgileri:Lecture Notes in Physics
Konular:
Online Erişim:OAPEN Library: download the publication
OAPEN Library: description of the publication
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!

MARC

LEADER 00000naaaa2200000uu 4500
001 oapen_2024_20_500_12657_23120
005 20200318
003 oapen
006 m o d
007 cr|mn|---annan
008 20200318s2020 xx |||||o ||| 0|eng d
020 |a 978-3-030-34489-4 
040 |a oapen  |c oapen 
024 7 |a 10.1007/978-3-030-34489-4  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a PHJ  |2 bicssc 
072 7 |a PHQ  |2 bicssc 
072 7 |a PHS  |2 bicssc 
072 7 |a PHU  |2 bicssc 
072 7 |a UYQM  |2 bicssc 
100 1 |a Ran, Shi-Ju  |4 auth 
700 1 |a Tirrito, Emanuele  |4 auth 
700 1 |a Peng, Cheng  |4 auth 
700 1 |a Chen, Xi  |4 auth 
700 1 |a Tagliacozzo, Luca  |4 auth 
700 1 |a Su, Gang  |4 auth 
700 1 |a Lewenstein, Maciej  |4 auth 
245 1 0 |a Tensor Network Contractions  |b Methods and Applications to Quantum Many-Body Systems 
260 |a Cham  |b Springer Nature  |c 2020 
300 |a 1 electronic resource (150 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Lecture Notes in Physics 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Tensor network is a fundamental mathematical tool with a huge range of applications in physics, such as condensed matter physics, statistic physics, high energy physics, and quantum information sciences. This open access book aims to explain the tensor network contraction approaches in a systematic way, from the basic definitions to the important applications. This book is also useful to those who apply tensor networks in areas beyond physics, such as machine learning and the big-data analysis. Tensor network originates from the numerical renormalization group approach proposed by K. G. Wilson in 1975. Through a rapid development in the last two decades, tensor network has become a powerful numerical tool that can efficiently simulate a wide range of scientific problems, with particular success in quantum many-body physics. Varieties of tensor network algorithms have been proposed for different problems. However, the connections among different algorithms are not well discussed or reviewed. To fill this gap, this book explains the fundamental concepts and basic ideas that connect and/or unify different strategies of the tensor network contraction algorithms. In addition, some of the recent progresses in dealing with tensor decomposition techniques and quantum simulations are also represented in this book to help the readers to better understand tensor network. This open access book is intended for graduated students, but can also be used as a professional book for researchers in the related fields. To understand most of the contents in the book, only basic knowledge of quantum mechanics and linear algebra is required. In order to fully understand some advanced parts, the reader will need to be familiar with notion of condensed matter physics and quantum information, that however are not necessary to understand the main parts of the book. This book is a good source for non-specialists on quantum physics to understand tensor network algorithms and the related mathematics. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0  |2 cc  |4 https://creativecommons.org/licenses/by/4.0 
546 |a English 
650 7 |a Optical physics  |2 bicssc 
650 7 |a Quantum physics (quantum mechanics & quantum field theory)  |2 bicssc 
650 7 |a Statistical physics  |2 bicssc 
650 7 |a Mathematical physics  |2 bicssc 
650 7 |a Machine learning  |2 bicssc 
653 |a Physics 
653 |a Physics 
653 |a Quantum physics 
653 |a Quantum optics 
653 |a Statistical physics 
653 |a Machine learning 
653 |a Elementary particles (Physics) 
653 |a Quantum field theory 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/id/894df17f-8784-4b00-92b9-e7f996ea815e/1007036.pdf  |7 0  |z OAPEN Library: download the publication 
856 4 0 |a www.oapen.org  |u http://library.oapen.org/handle/20.500.12657/23120  |7 0  |z OAPEN Library: description of the publication