Forecasting and Assessing Risk of Individual Electricity Peaks

The overarching aim of this open access book is to present self-contained theory and algorithms for investigation and prediction of electric demand peaks. A cross-section of popular demand forecasting algorithms from statistics, machine learning and mathematics is presented, followed by extreme valu...

Full description

Saved in:
Bibliographic Details
Main Author: Jacob, Maria (auth)
Other Authors: Neves, Cláudia (auth), Vukadinović Greetham, Danica (auth)
Format: Electronic Book Chapter
Language:English
Published: Cham Springer Nature 2020
Series:Mathematics of Planet Earth
Subjects:
Online Access:OAPEN Library: download the publication
OAPEN Library: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 oapen_2024_20_500_12657_23132
005 20200318
003 oapen
006 m o d
007 cr|mn|---annan
008 20200318s2020 xx |||||o ||| 0|eng d
020 |a 978-3-030-28669-9 
040 |a oapen  |c oapen 
024 7 |a 10.1007/978-3-030-28669-9  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a PBKS  |2 bicssc 
072 7 |a PBT  |2 bicssc 
072 7 |a PBW  |2 bicssc 
072 7 |a TH  |2 bicssc 
100 1 |a Jacob, Maria  |4 auth 
700 1 |a Neves, Cláudia  |4 auth 
700 1 |a Vukadinović Greetham, Danica  |4 auth 
245 1 0 |a Forecasting and Assessing Risk of Individual Electricity Peaks 
260 |a Cham  |b Springer Nature  |c 2020 
300 |a 1 electronic resource (97 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Mathematics of Planet Earth 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a The overarching aim of this open access book is to present self-contained theory and algorithms for investigation and prediction of electric demand peaks. A cross-section of popular demand forecasting algorithms from statistics, machine learning and mathematics is presented, followed by extreme value theory techniques with examples. In order to achieve carbon targets, good forecasts of peaks are essential. For instance, shifting demand or charging battery depends on correct demand predictions in time. Majority of forecasting algorithms historically were focused on average load prediction. In order to model the peaks, methods from extreme value theory are applied. This allows us to study extremes without making any assumption on the central parts of demand distribution and to predict beyond the range of available data. While applied on individual loads, the techniques described in this book can be extended naturally to substations, or to commercial settings. Extreme value theory techniques presented can be also used across other disciplines, for example for predicting heavy rainfalls, wind speed, solar radiation and extreme weather events. The book is intended for students, academics, engineers and professionals that are interested in short term load prediction, energy data analytics, battery control, demand side response and data science in general. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0  |2 cc  |4 https://creativecommons.org/licenses/by/4.0 
546 |a English 
650 7 |a Numerical analysis  |2 bicssc 
650 7 |a Probability & statistics  |2 bicssc 
650 7 |a Applied mathematics  |2 bicssc 
650 7 |a Energy technology & engineering  |2 bicssc 
653 |a Mathematics 
653 |a Mathematics 
653 |a Statistics  
653 |a Energy efficiency 
653 |a Algorithms 
653 |a Energy systems 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/id/f08f7582-5f99-48ce-bc16-2834f2113dea/1007022.pdf  |7 0  |z OAPEN Library: download the publication 
856 4 0 |a www.oapen.org  |u http://library.oapen.org/handle/20.500.12657/23132  |7 0  |z OAPEN Library: description of the publication