Chapter 8.1 Reaction-Diffusion Models of Pattern Formation in Developmental Biology

In this paper we present mathematical approaches to understand a symmetry break and formation of spatially heterogenous structures during development. We focus on the models given by reaction-diffusion equations and approach the question of possible mechanisms of development of spatially heterogeneo...

Full description

Saved in:
Bibliographic Details
Main Author: Marciniak-Czochra, Anna (auth)
Other Authors: Antoniouk, Alexandra V. (Editor), Melnik, Roderick V. N. (Editor)
Format: Electronic Book Chapter
Language:English
Published: Berlin/Boston De Gruyter 2012
Subjects:
Online Access:OAPEN Library: download the publication
OAPEN Library: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 oapen_2024_20_500_12657_23720
005 20191119
003 oapen
006 m o d
007 cr|mn|---annan
008 20191119s2012 xx |||||o ||| 0|eng d
020 |a 9783110288537.191 
020 |a 9783110273724 
040 |a oapen  |c oapen 
024 7 |a 10.1515/9783110288537.191  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a KNDR  |2 bicssc 
072 7 |a PBKS  |2 bicssc 
072 7 |a PBW  |2 bicssc 
072 7 |a PSA  |2 bicssc 
100 1 |a Marciniak-Czochra, Anna  |4 auth 
700 1 |a Antoniouk, Alexandra V.  |4 edt 
700 1 |a Melnik, Roderick V. N.  |4 edt 
700 1 |a Antoniouk, Alexandra V.  |4 oth 
700 1 |a Melnik, Roderick V. N.  |4 oth 
245 1 0 |a Chapter 8.1 Reaction-Diffusion Models of Pattern Formation in Developmental Biology 
260 |a Berlin/Boston  |b De Gruyter  |c 2012 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a In this paper we present mathematical approaches to understand a symmetry break and formation of spatially heterogenous structures during development. We focus on the models given by reaction-diffusion equations and approach the question of possible mechanisms of development of spatially heterogeneous structures. We discuss two mechanisms of pattern formation: diffusion-driven instability (Turing instability) and a hysteresis-driven mechanism, and demonstrate their possibilities and constraints in explaining different aspects of structure formation in cell systems. Depending on the type of nonlinearities, we show the existence of Turing patterns, the maxima of which may be of the spike or plateau type, and the existence of transition layer stationary solutions. These concepts are discussed on example of morphogenesis of the fresh water polyp Hydra, which is a model organism in developmental biology. 
536 |a FP7 Ideas: European Research Council 
540 |a All rights reserved  |4 http://oapen.org/content/about-rights 
546 |a English 
650 7 |a Road vehicle manufacturing industry  |2 bicssc 
650 7 |a Numerical analysis  |2 bicssc 
650 7 |a Applied mathematics  |2 bicssc 
650 7 |a Life sciences: general issues  |2 bicssc 
653 |a Mathematical Method 
653 |a Statistical Method 
653 |a Modeling Method 
653 |a Life Sciences Application 
773 1 0 |t Mathematics and Life Sciences  |7 nnaa  |o OAPEN Library UUID: 971c4d04-5c8e-442e-b04d-c7f4af74d703 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/id/f5373516-cab2-4d42-a857-0ff5f8c10d2f/6_[9783110288537 - Mathematics] 8.1 Reaction-Diffusion.pdf  |7 0  |z OAPEN Library: download the publication 
856 4 0 |a www.oapen.org  |u http://library.oapen.org/handle/20.500.12657/23720  |7 0  |z OAPEN Library: description of the publication