Chapter Measures of Pseudorandomness

In the second half of the 1990s Christian Mauduit and András Sárközy [86] introduced a new quantitative theory of pseudorandomness of binary sequences. Since then numerous papers have been written on this subject and the original theory has been generalized in several directions. Here I give a surve...

Ful tanımlama

Kaydedildi:
Detaylı Bibliyografya
Yazar: Gyarmati, Katalin (auth)
Diğer Yazarlar: Charpin, Pascale (Editör), Pott, Alexander (Editör), Winterhof, Arne (Editör)
Materyal Türü: Elektronik Kitap Bölümü
Dil:İngilizce
Baskı/Yayın Bilgisi: Berlin/Boston De Gruyter 2013
Konular:
Online Erişim:OAPEN Library: download the publication
OAPEN Library: description of the publication
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!

MARC

LEADER 00000naaaa2200000uu 4500
001 oapen_2024_20_500_12657_23754
005 20191118
003 oapen
006 m o d
007 cr|mn|---annan
008 20191118s2013 xx |||||o ||| 0|eng d
020 |a 9783110283600.43 
020 |a 9783110282405 
040 |a oapen  |c oapen 
024 7 |a 10.1515/9783110283600.43  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a PBF  |2 bicssc 
072 7 |a PBW  |2 bicssc 
072 7 |a UY  |2 bicssc 
100 1 |a Gyarmati, Katalin  |4 auth 
700 1 |a Charpin, Pascale  |4 edt 
700 1 |a Pott, Alexander  |4 edt 
700 1 |a Winterhof, Arne  |4 edt 
700 1 |a Charpin, Pascale  |4 oth 
700 1 |a Pott, Alexander  |4 oth 
700 1 |a Winterhof, Arne  |4 oth 
245 1 0 |a Chapter Measures of Pseudorandomness 
260 |a Berlin/Boston  |b De Gruyter  |c 2013 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a In the second half of the 1990s Christian Mauduit and András Sárközy [86] introduced a new quantitative theory of pseudorandomness of binary sequences. Since then numerous papers have been written on this subject and the original theory has been generalized in several directions. Here I give a survey of some of the most important results involving the new quantitative pseudorandom measures of finite bi-nary sequences. This area has strong connections to finite fields, in particular, some of the best known constructions are defined using characters of finite fields and their pseudorandom measures are estimated via character sums. 
536 |a FP7 Ideas: European Research Council 
540 |a All rights reserved  |4 http://oapen.org/content/about-rights 
546 |a English 
650 7 |a Algebra  |2 bicssc 
650 7 |a Applied mathematics  |2 bicssc 
650 7 |a Computer science  |2 bicssc 
653 |a Character sum 
653 |a Exponential sum 
653 |a Permutation Polynomial 
653 |a Almost Perfect Nonlinear Function 
653 |a Finite Field 
773 1 0 |t Finite Fields and Their Applications: Character Sums and Polynomials  |7 nnaa  |o OAPEN Library UUID: 71105342-6442-4069-93cf-0ef78e3a68bf 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/id/0913e3cb-e818-4238-ac1a-96d9f3bd1ec5/10_[9783110283600 - Finite Fields and Their Applications] Measures.pdf  |7 0  |z OAPEN Library: download the publication 
856 4 0 |a www.oapen.org  |u http://library.oapen.org/handle/20.500.12657/23754  |7 0  |z OAPEN Library: description of the publication