Introduction to Louis Michel's lattice geometry through group action

Group action analysis developed and applied mainly by Louis Michel to the study of N-dimensional periodic lattices is the central subject of the book. Di erent basic mathematical tools currently used for the description of lattice geometry are introduced and illustrated through applications to cryst...

Full description

Saved in:
Bibliographic Details
Main Author: Zhilinskii, Boris (auth)
Format: Electronic Book Chapter
Language:English
Published: EDP SCIENCES 2016
Subjects:
Online Access:OAPEN Library: download the publication
OAPEN Library: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 oapen_2024_20_500_12657_25012
005 20191023
003 oapen
006 m o d
007 cr|mn|---annan
008 20191023s2016 xx |||||o ||| 0|eng d
020 |a 9782759819522 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a PHM  |2 bicssc 
100 1 |a Zhilinskii, Boris  |4 auth 
245 1 0 |a Introduction to Louis Michel's lattice geometry through group action 
260 |b EDP SCIENCES  |c 2016 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Group action analysis developed and applied mainly by Louis Michel to the study of N-dimensional periodic lattices is the central subject of the book. Di erent basic mathematical tools currently used for the description of lattice geometry are introduced and illustrated through applications to crystal structures in two- and three-dimensional space, to abstract multi-dimensional lattices and to lattices associated with integrable dynamical systems. Starting from general Delone sets the authors turn to di erent symmetry and topological classi- cations including explicit construction of orbifolds for two- and three-dimensional point and space groups.Voronoï and Delone cells together with positive quadratic forms and lattice description by root systems are introduced to demonstrate alternative approaches to lattice geometry study. Zonotopes and zonohedral families of 2-, 3-, 4-, 5-dimensional lattices are explicitly visualized using graph theory approach. Along with crystallographic appl 
536 |a Knowledge Unlatched 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode 
546 |a English 
650 7 |a Atomic & molecular physics  |2 bicssc 
653 |a Mathematics 
653 |a cristallography 
653 |a group theory 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/id/5c8180cb-bba8-45ba-b242-6c21065eade3/1005090.pdf  |7 0  |z OAPEN Library: download the publication 
856 4 0 |a www.oapen.org  |u http://library.oapen.org/handle/20.500.12657/25012  |7 0  |z OAPEN Library: description of the publication