Social Networks with Rich Edge Semantics

This book introduces a new mechanism for representing social networks in which pairwise relationships can be drawn from a range of realistic possibilities, including different types of relationships, different strengths in the directions of a pair, positive and negative relationships, and relationsh...

Full description

Saved in:
Bibliographic Details
Main Author: Zheng, Quan (auth)
Other Authors: Skillicorn, David (auth)
Format: Electronic Book Chapter
Language:English
Published: Taylor & Francis 2017
Subjects:
Online Access:OAPEN Library: download the publication
OAPEN Library: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 oapen_2024_20_500_12657_25275
005 20190411
003 oapen
006 m o d
007 cr|mn|---annan
008 20190411s2017 xx |||||o ||| 0|eng d
020 |a 9781315390628 
020 |a 9781315390611 
020 |a 9780367573256 
020 |a 9781315390628 
020 |a 9781138032439 
040 |a oapen  |c oapen 
024 7 |a 10.1201/9781315390628  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a UBW  |2 bicssc 
100 1 |a Zheng, Quan  |4 auth 
700 1 |a Skillicorn, David  |4 auth 
245 1 0 |a Social Networks with Rich Edge Semantics 
260 |b Taylor & Francis  |c 2017 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a This book introduces a new mechanism for representing social networks in which pairwise relationships can be drawn from a range of realistic possibilities, including different types of relationships, different strengths in the directions of a pair, positive and negative relationships, and relationships whose intensities change with time. For each possibility, the book shows how to model the social network using spectral embedding. It also shows how to compose the techniques so that multiple edge semantics can be modeled together. The modeling techniques are then applied to a range of datasets to show how they can produce results that are useful in understanding real-world social networks. 
536 |a Knowledge Unlatched 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode 
546 |a English 
650 7 |a Internet: general works  |2 bicssc 
653 |a Computer Science 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/id/06f890bf-35bd-4b17-ac8b-b9db36331d59/1004819.pdf  |7 0  |z OAPEN Library: download the publication 
856 4 0 |a www.oapen.org  |u http://library.oapen.org/handle/20.500.12657/25275  |7 0  |z OAPEN Library: description of the publication