Elements of Causal Inference Foundations and Learning Algorithms

A concise and self-contained introduction to causal inference, increasingly important in data science and machine learning.The mathematization of causality is a relatively recent development, and has become increasingly important in data science and machine learning. This book offers a self-containe...

Full description

Saved in:
Bibliographic Details
Main Author: Peters, Jonas (auth)
Other Authors: Janzing, Dominik (auth), Schölkopf, Bernhard (auth)
Format: Electronic Book Chapter
Language:English
Published: Cambridge The MIT Press 2017
Series:Adaptive Computation and Machine Learning series
Subjects:
Online Access:OAPEN Library: download the publication
OAPEN Library: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 oapen_2024_20_500_12657_26040
005 20190120
003 oapen
006 m o d
007 cr|mn|---annan
008 20190120s2017 xx |||||o ||| 0|eng d
020 |a 9780262037310 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a UMS  |2 bicssc 
072 7 |a UYQM  |2 bicssc 
072 7 |a UYQN  |2 bicssc 
100 1 |a Peters, Jonas  |4 auth 
700 1 |a Janzing, Dominik  |4 auth 
700 1 |a Schölkopf, Bernhard  |4 auth 
245 1 0 |a Elements of Causal Inference  |b Foundations and Learning Algorithms 
260 |a Cambridge  |b The MIT Press  |c 2017 
300 |a 1 electronic resource (288 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Adaptive Computation and Machine Learning series 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a A concise and self-contained introduction to causal inference, increasingly important in data science and machine learning.The mathematization of causality is a relatively recent development, and has become increasingly important in data science and machine learning. This book offers a self-contained and concise introduction to causal models and how to learn them from data. After explaining the need for causal models and discussing some of the principles underlying causal inference, the book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from observational and interventional data, and how causal ideas could be exploited for classical machine learning problems. All of these topics are discussed first in terms of two variables and then in the more general multivariate case. The bivariate case turns out to be a particularly hard problem for causal learning because there are no conditional independences as used by classical methods for solving multivariate cases. The authors consider analyzing statistical asymmetries between cause and effect to be highly instructive, and they report on their decade of intensive research into this problem. The book is accessible to readers with a background in machine learning or statistics, and can be used in graduate courses or as a reference for researchers. The text includes code snippets that can be copied and pasted, exercises, and an appendix with a summary of the most important technical concepts. 
540 |a Creative Commons  |f by-nc-nd/4.0  |2 cc  |4 http://creativecommons.org/licenses/by-nc-nd/4.0 
546 |a English 
650 7 |a Mobile & handheld device programming / Apps programming  |2 bicssc 
650 7 |a Machine learning  |2 bicssc 
650 7 |a Neural networks & fuzzy systems  |2 bicssc 
653 |a Causality 
653 |a machine learning 
653 |a statistical models 
653 |a probability theory 
653 |a statistics 
653 |a assumptions 
653 |a cause-effect models 
653 |a interventions 
653 |a counterfactuals 
653 |a SCMs 
653 |a cause-effect models 
653 |a identifiability 
653 |a semi-supervised learning 
653 |a covariate shift 
653 |a multivariate causal models 
653 |a markov 
653 |a faithfulness 
653 |a causal minimality 
653 |a do-calculus 
653 |a falsifiability 
653 |a potential outcomes 
653 |a algorithmic independence 
653 |a half-sibling regression 
653 |a episodic reinforcement learning 
653 |a domain adaptation 
653 |a simpson's paradox 
653 |a conditional independence 
653 |a computer science 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/id/056a11be-ce3a-44b9-8987-a6c68fce8d9b/11283.pdf  |7 0  |z OAPEN Library: download the publication 
856 4 0 |a www.oapen.org  |u http://library.oapen.org/handle/20.500.12657/26040  |7 0  |z OAPEN Library: description of the publication