Learning Ontology Relations by Combining Corpus-Based Techniques and Reasoning on Data from Semantic Web Sources

The manual construction of formal domain conceptualizations (ontologies) is labor-intensive. Ontology learning, by contrast, provides (semi-)automatic ontology generation from input data such as domain text. This thesis proposes a novel approach for learning labels of non-taxonomic ontology relation...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Wohlgenannt, Gerhard (auth)
Formato: Electrónico Capítulo de libro
Lenguaje:inglés
Publicado: Bern Peter Lang International Academic Publishers 2018
Colección:Forschungsergebnisse der Wirtschaftsuniversitaet Wien 44
Materias:
Acceso en línea:OAPEN Library: download the publication
OAPEN Library: description of the publication
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The manual construction of formal domain conceptualizations (ontologies) is labor-intensive. Ontology learning, by contrast, provides (semi-)automatic ontology generation from input data such as domain text. This thesis proposes a novel approach for learning labels of non-taxonomic ontology relations. It combines corpus-based techniques with reasoning on Semantic Web data. Corpus-based methods apply vector space similarity of verbs co-occurring with labeled and unlabeled relations to calculate relation label suggestions from a set of candidates. A meta ontology in combination with Semantic Web sources such as DBpedia and OpenCyc allows reasoning to improve the suggested labels. An extensive formal evaluation demonstrates the superior accuracy of the presented hybrid approach.
Descripción Física:1 electronic resource (222 p.)
ISBN:b13903
9783631753842
Acceso:Open Access