Advanced Statistical Modeling, Forecasting, and Fault Detection in Renewable Energy Systems
Fault detection, control, and forecasting have a vital role in renewable energy systems (Photovoltaics (PV) and wind turbines (WTs)) to improve their productivity, ef?ciency, and safety, and to avoid expensive maintenance. For instance, the main crucial and challenging issue in solar and wind energy...
Saved in:
Other Authors: | , |
---|---|
Format: | Electronic Book Chapter |
Language: | English |
Published: |
InTechOpen
2020
|
Subjects: | |
Online Access: | OAPEN Library: download the publication OAPEN Library: description of the publication |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Fault detection, control, and forecasting have a vital role in renewable energy systems (Photovoltaics (PV) and wind turbines (WTs)) to improve their productivity, ef?ciency, and safety, and to avoid expensive maintenance. For instance, the main crucial and challenging issue in solar and wind energy production is the volatility of intermittent power generation due mainly to weather conditions. This fact usually limits the integration of PV systems and WTs into the power grid. Hence, accurately forecasting power generation in PV and WTs is of great importance for daily/hourly efficient management of power grid production, delivery, and storage, as well as for decision-making on the energy market. Also, accurate and prompt fault detection and diagnosis strategies are required to improve efficiencies of renewable energy systems, avoid the high cost of maintenance, and reduce risks of fire hazards, which could affect both personnel and installed equipment. This book intends to provide the reader with advanced statistical modeling, forecasting, and fault detection techniques in renewable energy systems. |
---|---|
ISBN: | /dx.doi.org/10.5772/intechopen.85999 9781838805463 |
Access: | Open Access |