Chapter Raman Fiber Laser-Based Amplification in Telecommunications
The chapter demonstrates a detailed study of Raman fiber laser (RFL)-based amplification techniques and their applications in long-haul/unrepeatered coherent transmission systems. RFL-based amplification techniques are investigated from signal/noise power distributions, relative intensity noise (RIN...
Saved in:
Main Author: | |
---|---|
Format: | Electronic Book Chapter |
Language: | English |
Published: |
InTechOpen
2018
|
Subjects: | |
Online Access: | OAPEN Library: download the publication OAPEN Library: description of the publication |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
MARC
LEADER | 00000naaaa2200000uu 4500 | ||
---|---|---|---|
001 | oapen_2024_20_500_12657_49267 | ||
005 | 20210602 | ||
003 | oapen | ||
006 | m o d | ||
007 | cr|mn|---annan | ||
008 | 20210602s2018 xx |||||o ||| 0|eng d | ||
020 | |a intechopen.73632 | ||
040 | |a oapen |c oapen | ||
024 | 7 | |a 10.5772/intechopen.73632 |c doi | |
041 | 0 | |a eng | |
042 | |a dc | ||
072 | 7 | |a PHJL |2 bicssc | |
100 | 1 | |a Tan, Mingming |4 auth | |
245 | 1 | 0 | |a Chapter Raman Fiber Laser-Based Amplification in Telecommunications |
260 | |b InTechOpen |c 2018 | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
506 | 0 | |a Open Access |2 star |f Unrestricted online access | |
520 | |a The chapter demonstrates a detailed study of Raman fiber laser (RFL)-based amplification techniques and their applications in long-haul/unrepeatered coherent transmission systems. RFL-based amplification techniques are investigated from signal/noise power distributions, relative intensity noise (RIN), and fiber laser mode structures. RFL-based amplification techniques can be divided into two categories according to the fiber laser generation mechanism: cavity Raman fiber laser with two fiber Bragg gratings (FBGs) and random distributed feedback (DFB) Raman fiber laser using one FBG. In addition, in cavity fiber laser-based amplification, reducing the reflectivity near the input helps mitigate the signal RIN, thanks to the reduced efficiency of the Stokes shift from the second-order pump. To evaluate the transmission performance, different RFL-based amplifiers were optimized in long-haul coherent transmission systems. Cavity fiber laser-based amplifier introduces >4.15 dB Q factor penalty, because the signal RIN is transferred from the second-order pump. However, random DFB fiber laser-based amplifier prevents the RIN transfer and therefore enables bidirectional second-order pumping, which gives the longest transmission distance up to 7915 km. In addition, using random DFB laser-based amplification achieves the distance of >350 km single mode fiber in unrepeatered DP-QPSK transmission. | ||
536 | |a H2020 Science with and for Society | ||
540 | |a Creative Commons |f https://creativecommons.org/licenses/by/3.0/ |2 cc |4 https://creativecommons.org/licenses/by/3.0/ | ||
546 | |a English | ||
650 | 7 | |a Laser physics |2 bicssc | |
653 | |a Raman amplification, Raman fiber laser, coherent transmission, random fiber laser, cavity fiber laser | ||
773 | 1 | 0 | |7 nnaa |
856 | 4 | 0 | |a www.oapen.org |u https://library.oapen.org/bitstream/id/6b43b72c-54ed-4e52-8859-59a70451f244/59240.pdf |7 0 |z OAPEN Library: download the publication |
856 | 4 | 0 | |a www.oapen.org |u https://library.oapen.org/handle/20.500.12657/49267 |7 0 |z OAPEN Library: description of the publication |