Chapter Modelling and Control of Narrow Tilting Vehicle for Future Transportation System
The increasing number of cars leads traffic congestion and parking problems in urban area. Small electric four-wheeled narrow tilting vehicles (NTV) have the potential to become the next generation of city cars. However, due to its narrow width, the NTV has to lean into corners like two-wheeled vehi...
Enregistré dans:
Auteur principal: | |
---|---|
Format: | Électronique Chapitre de livre |
Langue: | anglais |
Publié: |
InTechOpen
2020
|
Sujets: | |
Accès en ligne: | OAPEN Library: download the publication OAPEN Library: description of the publication |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Résumé: | The increasing number of cars leads traffic congestion and parking problems in urban area. Small electric four-wheeled narrow tilting vehicles (NTV) have the potential to become the next generation of city cars. However, due to its narrow width, the NTV has to lean into corners like two-wheeled vehicles during a turn. It is a challenge to maintain its roll stability to protect it from falling down. This chapter aims to describe the development of NTV and drive assistance technologies in helping to improve the stability of an NTV in turning. The modelling of an NTV considers the dynamics of the tyres and power train of the vehicle. A nonlinear tilting controller for the direct tilting control mechanism is designed to reduce the nonlinear behaviour of an NTV operating at different vehicle velocities. In addition, two torque vectoring based torque controllers are designed to reduce the counter-steering process and improve the stability of the NTV when it turns into a corner. The results indicate that the designed controllers have the ability to reduce the yaw rate tracking error and maximum roll rate. Then riders can drive an NTV easily with the drive assistance system. |
---|---|
ISBN: | intechopen.90145 |
Accès: | Open Access |