Chapter Machine Learning Techniques to Mitigate Nonlinear Phase Noise in Moderate Baud Rate Optical Communication Systems

Nonlinear phase noise (NLPN) is the most common impairment that degrades the performance of radio-over-fiber networks. The effect of NLPN in the constellation diagram consists of a shape distortion of symbols that increases the symbol error rate due to symbol overlapping when using a conventional de...

Full description

Saved in:
Bibliographic Details
Main Author: Bogoni, A. (auth)
Other Authors: Fern&#225, o (auth), ndez, E. (auth), C&#225, a (auth), rdenas Soto, A. (auth), Guerrero Gonzalez, N. (auth), Serafino, G. (auth), Ghelfi, P. (auth)
Format: Electronic Book Chapter
Language:English
Published: InTechOpen 2020
Subjects:
Online Access:OAPEN Library: download the publication
OAPEN Library: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 oapen_2024_20_500_12657_49366
005 20210602
003 oapen
006 m o d
007 cr|mn|---annan
008 20210602s2020 xx |||||o ||| 0|eng d
020 |a intechopen.88871 
040 |a oapen  |c oapen 
024 7 |a 10.5772/intechopen.88871  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a U  |2 bicssc 
100 1 |a Bogoni, A.  |4 auth 
700 1 |a Fern&#225, o  |4 auth 
700 1 |a ndez, E.  |4 auth 
700 1 |a C&#225, a  |4 auth 
700 1 |a rdenas Soto, A.  |4 auth 
700 1 |a Guerrero Gonzalez, N.  |4 auth 
700 1 |a Serafino, G.  |4 auth 
700 1 |a Ghelfi, P.  |4 auth 
245 1 0 |a Chapter Machine Learning Techniques to Mitigate Nonlinear Phase Noise in Moderate Baud Rate Optical Communication Systems 
260 |b InTechOpen  |c 2020 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Nonlinear phase noise (NLPN) is the most common impairment that degrades the performance of radio-over-fiber networks. The effect of NLPN in the constellation diagram consists of a shape distortion of symbols that increases the symbol error rate due to symbol overlapping when using a conventional demodulation grid. Symbol shape characterization was obtained experimentally at a moderate baud rate (250 MBd) for constellations impaired by phase noise due to a mismatch between the optical carrier and the transmitted radio frequency signal. Machine learning algorithms have become a powerful tool to perform monitoring and to identify and mitigate distortions introduced in both the electrical and optical domains. Clustering-based demodulation assisted with Voronoi contours enables the definition of non-Gaussian boundaries to provide flexible demodulation of 16-QAM and 4+12 PSK modulation formats. Phase-offset and in-phase and quadrature imbalance may be detected on the received constellation and compensated by applying thresholding boundaries obtained from impairment characterization through statistical analysis. Experimental results show increased tolerance to the optical signal-to-noise ratio (OSNR) obtained from clustering methods based on k-means and fuzzy c-means Gustafson-Kessel algorithms. Improvements of 3.2 dB for 16-QAM, and 1.4 dB for 4+12 PSK in the OSNR scale as a function of the bit error rate are obtained without requiring additional compensation algorithms. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/3.0/  |2 cc  |4 https://creativecommons.org/licenses/by/3.0/ 
546 |a English 
650 7 |a Computing & information technology  |2 bicssc 
653 |a nonlinear phase noise, clustering, Voronoi, decision boundary 
773 1 0 |7 nnaa 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/id/41ebe4e3-6aba-4d49-9df3-51aa7290a255/69488.pdf  |7 0  |z OAPEN Library: download the publication 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/handle/20.500.12657/49366  |7 0  |z OAPEN Library: description of the publication