Probability in Electrical Engineering and Computer Science An Application-Driven Course

This revised textbook motivates and illustrates the techniques of applied probability by applications in electrical engineering and computer science (EECS). The author presents information processing and communication systems that use algorithms based on probabilistic models and techniques, includin...

Full description

Saved in:
Bibliographic Details
Main Author: Walrand, Jean (auth)
Format: Electronic Book Chapter
Language:English
Published: Springer Nature 2021
Subjects:
Online Access:OAPEN Library: download the publication
OAPEN Library: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 oapen_2024_20_500_12657_50016
005 20210714
003 oapen
006 m o d
007 cr|mn|---annan
008 20210714s2021 xx |||||o ||| 0|eng d
020 |a 978-3-030-49995-2 
020 |a 9783030499952 
040 |a oapen  |c oapen 
024 7 |a 10.1007/978-3-030-49995-2  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a UYAM  |2 bicssc 
072 7 |a TJK  |2 bicssc 
072 7 |a TBJ  |2 bicssc 
072 7 |a PBT  |2 bicssc 
100 1 |a Walrand, Jean  |4 auth 
245 1 0 |a Probability in Electrical Engineering and Computer Science  |b An Application-Driven Course 
260 |b Springer Nature  |c 2021 
300 |a 1 electronic resource (380 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a This revised textbook motivates and illustrates the techniques of applied probability by applications in electrical engineering and computer science (EECS). The author presents information processing and communication systems that use algorithms based on probabilistic models and techniques, including web searches, digital links, speech recognition, GPS, route planning, recommendation systems, classification, and estimation. He then explains how these applications work and, along the way, provides the readers with the understanding of the key concepts and methods of applied probability. Python labs enable the readers to experiment and consolidate their understanding. The book includes homework, solutions, and Jupyter notebooks. This edition includes new topics such as Boosting, Multi-armed bandits, statistical tests, social networks, queuing networks, and neural networks. For ancillaries related to this book, including examples of Python demos and also Python labs used in Berkeley, please email Mary James at mary.james@springer.com. This is an open access book. 
536 |a University of California, Berkeley Foundation 
540 |a Creative Commons  |f by/4.0/  |2 cc  |4 http://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Maths for computer scientists  |2 bicssc 
650 7 |a Communications engineering / telecommunications  |2 bicssc 
650 7 |a Maths for engineers  |2 bicssc 
650 7 |a Probability & statistics  |2 bicssc 
653 |a Probability and Statistics in Computer Science 
653 |a Communications Engineering, Networks 
653 |a Mathematical and Computational Engineering 
653 |a Probability Theory and Stochastic Processes 
653 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences 
653 |a Mathematical and Computational Engineering Applications 
653 |a Probability Theory 
653 |a Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences 
653 |a Applied probability 
653 |a Hypothesis testing 
653 |a Detection theory 
653 |a Expectation maximization 
653 |a Stochastic dynamic programming 
653 |a Machine learning 
653 |a Stochastic gradient descent 
653 |a Deep neural networks 
653 |a Matrix completion 
653 |a Linear and polynomial regression 
653 |a Open Access 
653 |a Maths for computer scientists 
653 |a Mathematical & statistical software 
653 |a Communications engineering / telecommunications 
653 |a Maths for engineers 
653 |a Probability & statistics 
653 |a Stochastics 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/id/18c4a920-d0c6-4758-b959-f38da0793066/978-3-030-49995-2.pdf  |7 0  |z OAPEN Library: download the publication 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/handle/20.500.12657/50016  |7 0  |z OAPEN Library: description of the publication