Chapter 15 Epistemic Gains and Epistemic Games Reliability and Higher Order Evidence in Medicine and Pharmacology

In this paper I analyse the dissent around evidence standards in medicine and pharmacology as a result of distinct ways to address epistemic losses in our game with nature and the scientific ecosystem: an "elitist" and a "pluralist" approach. The former is focused on reliability...

Full description

Saved in:
Bibliographic Details
Main Author: Osimani, Barbara (auth)
Format: Electronic Book Chapter
Language:English
Published: Springer Nature 2020
Subjects:
Online Access:OAPEN Library: download the publication
OAPEN Library: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 oapen_2024_20_500_12657_50312
005 20210804
003 oapen
006 m o d
007 cr|mn|---annan
008 20210804s2020 xx |||||o ||| 0|eng d
020 |a 978-3-030-29179-2_15 
020 |a 9783030291785 
040 |a oapen  |c oapen 
024 7 |a 10.1007/978-3-030-29179-2_15  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a MMG  |2 bicssc 
100 1 |a Osimani, Barbara  |4 auth 
245 1 0 |a Chapter 15 Epistemic Gains and Epistemic Games  |b Reliability and Higher Order Evidence in Medicine and Pharmacology 
260 |b Springer Nature  |c 2020 
300 |a 1 electronic resource (28 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a In this paper I analyse the dissent around evidence standards in medicine and pharmacology as a result of distinct ways to address epistemic losses in our game with nature and the scientific ecosystem: an "elitist" and a "pluralist" approach. The former is focused on reliability as minimisation of random and systematic error, and is grounded on a categorical approach to causal assessment, whereas the latter is more focused on the high context-sensitivity of causation in medicine and in the soft sciences in general, and favours probabilistic approaches to scientific inference, as better equipped for defeasibility of causal inference in such domains. I then present a system for probabilistic causal assessment from heterogenous evidence that makes justice of concerns from both positions, while also incorporating "higher order evidence" (evidence/information about the evidence itself) in hypothesis confirmation. 
536 |a H2020 European Research Council 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Pharmacology  |2 bicssc 
653 |a Uncertainty Management in Pharmacology, Causality,Medical Epistemology, evidence standards, random error, systematic error, extrapolation, relevance, bias 
773 1 0 |t Uncertainty in Pharmacology  |7 nnaa  |o OAPEN Library UUID: 6dde7ba1-8654-4ccc-9249-6bef6c837290 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/id/4605ca26-3da4-4cf1-87fb-288f1a6e1b16/Osimani_2020 Epi Games.pdf  |7 0  |z OAPEN Library: download the publication 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/handle/20.500.12657/50312  |7 0  |z OAPEN Library: description of the publication