Invariant Differential Operators Volume 2 Quantum Groups (Volume 39)
With applications in quantum field theory, general relativity and elementary particle physics, this three-volume work studies the invariance of differential operators under Lie algebras, quantum groups and superalgebras. This second volume covers quantum groups in their two main manifestations: quan...
Bewaard in:
Hoofdauteur: | |
---|---|
Formaat: | Elektronisch Hoofdstuk |
Taal: | Engels |
Gepubliceerd in: |
De Gruyter
2017
|
Onderwerpen: | |
Online toegang: | OAPEN Library: download the publication OAPEN Library: description of the publication |
Tags: |
Voeg label toe
Geen labels, Wees de eerste die dit record labelt!
|
MARC
LEADER | 00000naaaa2200000uu 4500 | ||
---|---|---|---|
001 | oapen_2024_20_500_12657_51531 | ||
005 | 20211116 | ||
003 | oapen | ||
006 | m o d | ||
007 | cr|mn|---annan | ||
008 | 20211116s2017 xx |||||o ||| 0|eng d | ||
020 | |a /doi.org/10.1515/9783110427707 | ||
020 | |a 9783110427707 | ||
040 | |a oapen |c oapen | ||
024 | 7 | |a https://doi.org/10.1515/9783110427707 |c doi | |
041 | 0 | |a eng | |
042 | |a dc | ||
072 | 7 | |a PHQ |2 bicssc | |
072 | 7 | |a PB |2 bicssc | |
100 | 1 | |a Dobrev, Vladimir K. |4 auth | |
245 | 1 | 0 | |a Invariant Differential Operators |b Volume 2 Quantum Groups (Volume 39) |
260 | |b De Gruyter |c 2017 | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
506 | 0 | |a Open Access |2 star |f Unrestricted online access | |
520 | |a With applications in quantum field theory, general relativity and elementary particle physics, this three-volume work studies the invariance of differential operators under Lie algebras, quantum groups and superalgebras. This second volume covers quantum groups in their two main manifestations: quantum algebras and matrix quantum groups. The exposition covers both the general aspects of these and a great variety of concrete explicitly presented examples. The invariant q-difference operators are introduced mainly using representations of quantum algebras on their dual matrix quantum groups as carrier spaces. This is the first book that covers the title matter applied to quantum groups. | ||
540 | |a Creative Commons |f https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode |2 cc |4 https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode | ||
546 | |a English | ||
650 | 7 | |a Quantum physics (quantum mechanics & quantum field theory) |2 bicssc | |
650 | 7 | |a Mathematics |2 bicssc | |
653 | |a Science | ||
653 | |a Physics | ||
653 | |a Quantum Theory | ||
653 | |a Mathematics | ||
856 | 4 | 0 | |a www.oapen.org |u https://library.oapen.org/bitstream/id/64d3c255-c0de-4db2-9315-fa1542faa7c9/external_content.pdf |7 0 |z OAPEN Library: download the publication |
856 | 4 | 0 | |a www.oapen.org |u https://library.oapen.org/handle/20.500.12657/51531 |7 0 |z OAPEN Library: description of the publication |