On the Stability of Objective Structures (Volume 38)

The main focus of this thesis is the discussion of stability of an objective (atomic) structure consisting of single atoms which interact via a potential. We define atomistic stability using a second derivative test. More precisely, atomistic stability is equivalent to a vanishing first derivative o...

Full description

Saved in:
Bibliographic Details
Main Author: Steinbach, Martin (auth)
Format: Electronic Book Chapter
Language:English
Published: Logos Verlag Berlin 2021
Subjects:
Online Access:OAPEN Library: download the publication
OAPEN Library: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 oapen_2024_20_500_12657_52506
005 20220120
003 oapen
006 m o d
007 cr|mn|---annan
008 20220120s2021 xx |||||o ||| 0|eng d
020 |a /doi.org/10.30819/5378 
020 |a 9783832553784 
020 |a 9783832553784 
040 |a oapen  |c oapen 
024 7 |a https://doi.org/10.30819/5378  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a PB  |2 bicssc 
072 7 |a PH  |2 bicssc 
100 1 |a Steinbach, Martin  |4 auth 
245 1 0 |a On the Stability of Objective Structures (Volume 38) 
260 |b Logos Verlag Berlin  |c 2021 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a The main focus of this thesis is the discussion of stability of an objective (atomic) structure consisting of single atoms which interact via a potential. We define atomistic stability using a second derivative test. More precisely, atomistic stability is equivalent to a vanishing first derivative of the configurational energy (at the corresponding point) and the coerciveness of the second derivative of the configurational energy with respect to an appropriate semi-norm. Atomistic stability of a lattice is well understood, see, e.,g., [40]. The aim of this thesis is to generalize the theory to objective structures. In particular, we first investigate discrete subgroups of the Euclidean group, then define an appropriate seminorm and the atomistic stability for a given objective structure, and finally provide an efficient algorithm to check its atomistic stability. The algorithm particularly checks the validity of the Cauchy-Born rule for objective structures. To illustrate our results, we prove numerically the stability of a carbon nanotube by applying the algorithm. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode 
546 |a English 
650 7 |a Mathematics  |2 bicssc 
650 7 |a Physics  |2 bicssc 
653 |a Mathematics 
653 |a Science 
653 |a Physics 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/id/ff0d9d33-140a-4e39-b10b-268c0504beb9/external_content.pdf  |7 0  |z OAPEN Library: download the publication 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/handle/20.500.12657/52506  |7 0  |z OAPEN Library: description of the publication