Data Assimilation Fundamentals A Unified Formulation of the State and Parameter Estimation Problem

This open-access textbook's significant contribution is the unified derivation of data-assimilation techniques from a common fundamental and optimal starting point, namely Bayes' theorem. Unique for this book is the "top-down" derivation of the assimilation methods. It starts fro...

Full description

Saved in:
Bibliographic Details
Main Author: Evensen, Geir (auth)
Other Authors: Vossepoel, Femke C. (auth), van Leeuwen, Peter Jan (auth)
Format: Electronic Book Chapter
Language:English
Published: Cham Springer Nature 2022
Series:Springer Textbooks in Earth Sciences, Geography and Environment
Subjects:
Online Access:OAPEN Library: download the publication
OAPEN Library: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 oapen_2024_20_500_12657_54434
005 20220513
003 oapen
006 m o d
007 cr|mn|---annan
008 20220513s2022 xx |||||o ||| 0|eng d
020 |a 978-3-030-96709-3 
020 |a 9783030967093 
040 |a oapen  |c oapen 
024 7 |a 10.1007/978-3-030-96709-3  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a RB  |2 bicssc 
072 7 |a PBT  |2 bicssc 
072 7 |a PBTB  |2 bicssc 
100 1 |a Evensen, Geir  |4 auth 
700 1 |a Vossepoel, Femke C.  |4 auth 
700 1 |a van Leeuwen, Peter Jan  |4 auth 
245 1 0 |a Data Assimilation Fundamentals  |b A Unified Formulation of the State and Parameter Estimation Problem 
260 |a Cham  |b Springer Nature  |c 2022 
300 |a 1 electronic resource (245 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Springer Textbooks in Earth Sciences, Geography and Environment 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a This open-access textbook's significant contribution is the unified derivation of data-assimilation techniques from a common fundamental and optimal starting point, namely Bayes' theorem. Unique for this book is the "top-down" derivation of the assimilation methods. It starts from Bayes theorem and gradually introduces the assumptions and approximations needed to arrive at today's popular data-assimilation methods. This strategy is the opposite of most textbooks and reviews on data assimilation that typically take a bottom-up approach to derive a particular assimilation method. E.g., the derivation of the Kalman Filter from control theory and the derivation of the ensemble Kalman Filter as a low-rank approximation of the standard Kalman Filter. The bottom-up approach derives the assimilation methods from different mathematical principles, making it difficult to compare them. Thus, it is unclear which assumptions are made to derive an assimilation method and sometimes even which problem it aspires to solve. The book's top-down approach allows categorizing data-assimilation methods based on the approximations used. This approach enables the user to choose the most suitable method for a particular problem or application. Have you ever wondered about the difference between the ensemble 4DVar and the "ensemble randomized likelihood" (EnRML) methods? Do you know the differences between the ensemble smoother and the ensemble-Kalman smoother? Would you like to understand how a particle flow is related to a particle filter? In this book, we will provide clear answers to several such questions. The book provides the basis for an advanced course in data assimilation. It focuses on the unified derivation of the methods and illustrates their properties on multiple examples. It is suitable for graduate students, post-docs, scientists, and practitioners working in data assimilation. 
540 |a Creative Commons  |f by/4.0/  |2 cc  |4 http://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Earth sciences  |2 bicssc 
650 7 |a Probability & statistics  |2 bicssc 
650 7 |a Bayesian inference  |2 bicssc 
653 |a Data Assimilation 
653 |a Parameter Estimation 
653 |a Ensemble Kalman Filter 
653 |a 4DVar 
653 |a Representer Method 
653 |a Ensemble Methods 
653 |a Particle Filter 
653 |a Particle Flow 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/id/f7ff8fe8-3fa2-4e11-9e00-9c9e576d5c48/978-3-030-96709-3.pdf  |7 0  |z OAPEN Library: download the publication 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/handle/20.500.12657/54434  |7 0  |z OAPEN Library: description of the publication