xxAI - Beyond Explainable AI International Workshop, Held in Conjunction with ICML 2020, July 18, 2020, Vienna, Austria, Revised and Extended Papers

This is an open access book. Statistical machine learning (ML) has triggered a renaissance of artificial intelligence (AI). While the most successful ML models, including Deep Neural Networks (DNN), have developed better predictivity, they have become increasingly complex, at the expense of human in...

Full description

Saved in:
Bibliographic Details
Other Authors: Holzinger, Andreas (Editor), Goebel, Randy (Editor), Fong, Ruth (Editor), Moon, Taesup (Editor), Müller, Klaus-Robert (Editor), Samek, Wojciech (Editor)
Format: Electronic Book Chapter
Language:English
Published: Cham Springer Nature 2022
Series:Lecture Notes in Computer Science; Lecture Notes in Artificial Intelligence 13200
Subjects:
Online Access:OAPEN Library: download the publication
OAPEN Library: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 oapen_2024_20_500_12657_54443
005 20220513
003 oapen
006 m o d
007 cr|mn|---annan
008 20220513s2022 xx |||||o ||| 0|eng d
020 |a 978-3-031-04083-2 
020 |a 9783031040832 
040 |a oapen  |c oapen 
024 7 |a 10.1007/978-3-031-04083-2  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a UYQ  |2 bicssc 
072 7 |a UYQM  |2 bicssc 
100 1 |a Holzinger, Andreas  |4 edt 
700 1 |a Goebel, Randy  |4 edt 
700 1 |a Fong, Ruth  |4 edt 
700 1 |a Moon, Taesup  |4 edt 
700 1 |a Müller, Klaus-Robert  |4 edt 
700 1 |a Samek, Wojciech  |4 edt 
700 1 |a Holzinger, Andreas  |4 oth 
700 1 |a Goebel, Randy  |4 oth 
700 1 |a Fong, Ruth  |4 oth 
700 1 |a Moon, Taesup  |4 oth 
700 1 |a Müller, Klaus-Robert  |4 oth 
700 1 |a Samek, Wojciech  |4 oth 
245 1 0 |a xxAI - Beyond Explainable AI  |b International Workshop, Held in Conjunction with ICML 2020, July 18, 2020, Vienna, Austria, Revised and Extended Papers 
260 |a Cham  |b Springer Nature  |c 2022 
300 |a 1 electronic resource (397 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Lecture Notes in Computer Science; Lecture Notes in Artificial Intelligence  |v 13200 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a This is an open access book. Statistical machine learning (ML) has triggered a renaissance of artificial intelligence (AI). While the most successful ML models, including Deep Neural Networks (DNN), have developed better predictivity, they have become increasingly complex, at the expense of human interpretability (correlation vs. causality). The field of explainable AI (xAI) has emerged with the goal of creating tools and models that are both predictive and interpretable and understandable for humans. Explainable AI is receiving huge interest in the machine learning and AI research communities, across academia, industry, and government, and there is now an excellent opportunity to push towards successful explainable AI applications. This volume will help the research community to accelerate this process, to promote a more systematic use of explainable AI to improve models in diverse applications, and ultimately to better understand how current explainable AI methods need to be improved and what kind of theory of explainable AI is needed. After overviews of current methods and challenges, the editors include chapters that describe new developments in explainable AI. The contributions are from leading researchers in the field, drawn from both academia and industry, and many of the chapters take a clear interdisciplinary approach to problem-solving. The concepts discussed include explainability, causability, and AI interfaces with humans, and the applications include image processing, natural language, law, fairness, and climate science. 
540 |a Creative Commons  |f by/4.0/  |2 cc  |4 http://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Artificial intelligence  |2 bicssc 
650 7 |a Machine learning  |2 bicssc 
653 |a Computer Science 
653 |a Informatics 
653 |a Conference Proceedings 
653 |a Research 
653 |a Applications 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/id/7ffa4cd2-e348-465d-a416-d928437a028c/978-3-031-04083-2.pdf  |7 0  |z OAPEN Library: download the publication 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/handle/20.500.12657/54443  |7 0  |z OAPEN Library: description of the publication