Stochastic Range Estimation Algorithms for Electric Vehicles using Data-Driven Learning Models
This work aims at improving the energy consumption forecast of electric vehicles by enhancing the prediction with a notion of uncertainty. The algorithm itself learns from driver and traffic data in a training set to generate accurate, driver-individual energy consumption forecasts.
Enregistré dans:
Auteur principal: | |
---|---|
Format: | Électronique Chapitre de livre |
Langue: | anglais |
Publié: |
Karlsruhe
KIT Scientific Publishing
2022
|
Collection: | Karlsruher Schriftenreihe Fahrzeugsystemtechnik
6 |
Sujets: | |
Accès en ligne: | OAPEN Library: download the publication OAPEN Library: description of the publication |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Résumé: | This work aims at improving the energy consumption forecast of electric vehicles by enhancing the prediction with a notion of uncertainty. The algorithm itself learns from driver and traffic data in a training set to generate accurate, driver-individual energy consumption forecasts. |
---|---|
Description matérielle: | 1 electronic resource (192 p.) |
ISBN: | KSP/1000143200 9783731511663 |
Accès: | Open Access |