Stochastic Range Estimation Algorithms for Electric Vehicles using Data-Driven Learning Models

This work aims at improving the energy consumption forecast of electric vehicles by enhancing the prediction with a notion of uncertainty. The algorithm itself learns from driver and traffic data in a training set to generate accurate, driver-individual energy consumption forecasts.

Bewaard in:
Bibliografische gegevens
Hoofdauteur: Scheubner, Stefan (auth)
Formaat: Elektronisch Hoofdstuk
Taal:Engels
Gepubliceerd in: Karlsruhe KIT Scientific Publishing 2022
Reeks:Karlsruher Schriftenreihe Fahrzeugsystemtechnik 6
Onderwerpen:
Online toegang:OAPEN Library: download the publication
OAPEN Library: description of the publication
Tags: Voeg label toe
Geen labels, Wees de eerste die dit record labelt!
Omschrijving
Samenvatting:This work aims at improving the energy consumption forecast of electric vehicles by enhancing the prediction with a notion of uncertainty. The algorithm itself learns from driver and traffic data in a training set to generate accurate, driver-individual energy consumption forecasts.
Fysieke beschrijving:1 electronic resource (192 p.)
ISBN:KSP/1000143200
9783731511663
Toegang:Open Access