Stochastic Range Estimation Algorithms for Electric Vehicles using Data-Driven Learning Models
This work aims at improving the energy consumption forecast of electric vehicles by enhancing the prediction with a notion of uncertainty. The algorithm itself learns from driver and traffic data in a training set to generate accurate, driver-individual energy consumption forecasts.
Bewaard in:
Hoofdauteur: | |
---|---|
Formaat: | Elektronisch Hoofdstuk |
Taal: | Engels |
Gepubliceerd in: |
Karlsruhe
KIT Scientific Publishing
2022
|
Reeks: | Karlsruher Schriftenreihe Fahrzeugsystemtechnik
6 |
Onderwerpen: | |
Online toegang: | OAPEN Library: download the publication OAPEN Library: description of the publication |
Tags: |
Voeg label toe
Geen labels, Wees de eerste die dit record labelt!
|
Samenvatting: | This work aims at improving the energy consumption forecast of electric vehicles by enhancing the prediction with a notion of uncertainty. The algorithm itself learns from driver and traffic data in a training set to generate accurate, driver-individual energy consumption forecasts. |
---|---|
Fysieke beschrijving: | 1 electronic resource (192 p.) |
ISBN: | KSP/1000143200 9783731511663 |
Toegang: | Open Access |