Stochastic Range Estimation Algorithms for Electric Vehicles using Data-Driven Learning Models

This work aims at improving the energy consumption forecast of electric vehicles by enhancing the prediction with a notion of uncertainty. The algorithm itself learns from driver and traffic data in a training set to generate accurate, driver-individual energy consumption forecasts.

Enregistré dans:
Détails bibliographiques
Auteur principal: Scheubner, Stefan (auth)
Format: Électronique Chapitre de livre
Langue:anglais
Publié: Karlsruhe KIT Scientific Publishing 2022
Collection:Karlsruher Schriftenreihe Fahrzeugsystemtechnik 6
Sujets:
Accès en ligne:OAPEN Library: download the publication
OAPEN Library: description of the publication
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:This work aims at improving the energy consumption forecast of electric vehicles by enhancing the prediction with a notion of uncertainty. The algorithm itself learns from driver and traffic data in a training set to generate accurate, driver-individual energy consumption forecasts.
Description matérielle:1 electronic resource (192 p.)
ISBN:KSP/1000143200
9783731511663
Accès:Open Access