Stochastic Range Estimation Algorithms for Electric Vehicles using Data-Driven Learning Models
This work aims at improving the energy consumption forecast of electric vehicles by enhancing the prediction with a notion of uncertainty. The algorithm itself learns from driver and traffic data in a training set to generate accurate, driver-individual energy consumption forecasts.
Furkejuvvon:
Váldodahkki: | Scheubner, Stefan (auth) |
---|---|
Materiálatiipa: | Elektrovnnalaš Girjji oassi |
Giella: | eaŋgalasgiella |
Almmustuhtton: |
Karlsruhe
KIT Scientific Publishing
2022
|
Ráidu: | Karlsruher Schriftenreihe Fahrzeugsystemtechnik
6 |
Fáttát: | |
Liŋkkat: | OAPEN Library: download the publication OAPEN Library: description of the publication |
Fáddágilkorat: |
Lasit fáddágilkoriid
Eai fáddágilkorat, Lasit vuosttaš fáddágilkora!
|
Geahča maid
-
Stochastic Range Estimation Algorithms for Electric Vehicles using Data-Driven Learning Models
Dahkki: Scheubner, Stefan
Almmustuhtton: (2022) -
Road Condition Estimation with Data Mining Methods using Vehicle Based Sensors
Dahkki: Masino, Johannes
Almmustuhtton: (2021) -
Road Condition Estimation with Data Mining Methods using Vehicle Based Sensors
Dahkki: Masino, Johannes
Almmustuhtton: (2021) -
Lademanagement für Elektrofahrzeuge
Dahkki: Detzler, Sarah Katharina
Almmustuhtton: (2017) -
Planning the Charging Infrastructure for Electric Vehicles in Cities and Regions
Dahkki: Wirges, Johannes
Almmustuhtton: (2016)