Regularized System Identification Learning Dynamic Models from Data

This open access book provides a comprehensive treatment of recent developments in kernel-based identification that are of interest to anyone engaged in learning dynamic systems from data. The reader is led step by step into understanding of a novel paradigm that leverages the power of machine learn...

Ful tanımlama

Kaydedildi:
Detaylı Bibliyografya
Yazar: Pillonetto, Gianluigi (auth)
Diğer Yazarlar: Chen, Tianshi (auth), Chiuso, Alessandro (auth), De Nicolao, Giuseppe (auth), Ljung, Lennart (auth)
Materyal Türü: Elektronik Kitap Bölümü
Dil:İngilizce
Baskı/Yayın Bilgisi: Cham Springer Nature 2022
Seri Bilgileri:Communications and Control Engineering
Konular:
Online Erişim:OAPEN Library: download the publication
OAPEN Library: description of the publication
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!
Diğer Bilgiler
Özet:This open access book provides a comprehensive treatment of recent developments in kernel-based identification that are of interest to anyone engaged in learning dynamic systems from data. The reader is led step by step into understanding of a novel paradigm that leverages the power of machine learning without losing sight of the system-theoretical principles of black-box identification. The authors' reformulation of the identification problem in the light of regularization theory not only offers new insight on classical questions, but paves the way to new and powerful algorithms for a variety of linear and nonlinear problems. Regression methods such as regularization networks and support vector machines are the basis of techniques that extend the function-estimation problem to the estimation of dynamic models. Many examples, also from real-world applications, illustrate the comparative advantages of the new nonparametric approach with respect to classic parametric prediction error methods. The challenges it addresses lie at the intersection of several disciplines so Regularized System Identification will be of interest to a variety of researchers and practitioners in the areas of control systems, machine learning, statistics, and data science. This is an open access book.
Fiziksel Özellikler:1 electronic resource (377 p.)
ISBN:978-3-030-95860-2
9783030958602
Erişim:Open Access