Deep Neural Networks and Data for Automated Driving Robustness, Uncertainty Quantification, and Insights Towards Safety
This open access book brings together the latest developments from industry and research on automated driving and artificial intelligence. Environment perception for highly automated driving heavily employs deep neural networks, facing many challenges. How much data do we need for training and testi...
Gardado en:
Outros autores: | Fingscheidt, Tim (Editor), Gottschalk, Hanno (Editor), Houben, Sebastian (Editor) |
---|---|
Formato: | Electrónico Capítulo de libro |
Idioma: | inglés |
Publicado: |
Cham
Springer Nature
2022
|
Subjects: | |
Acceso en liña: | OAPEN Library: download the publication OAPEN Library: description of the publication |
Tags: |
Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!
|
Títulos similares
-
Deep Neural Networks and Data for Automated Driving Robustness, Uncertainty Quantification, and Insights Towards Safety
Publicado: (2022) -
Deep Neural Networks and Data for Automated Driving Robustness, Uncertainty Quantification, and Insights Towards Safety /
Publicado: (2022) -
Advances in Automated Driving Systems
Publicado: (2022) -
Measurable Safety of Automated Driving Functions in Commercial Motor Vehicles Technological and Methodical Approaches
por: Elgharbawy, Mohamed
Publicado: (2023) -
Measurable Safety of Automated Driving Functions in Commercial Motor Vehicles Technological and Methodical Approaches
por: Elgharbawy, Mohamed
Publicado: (2023)