Probabilistic Models and Inference for Multi-View People Detection in Overlapping Depth Images

In this work, the task of wide-area indoor people detection in a network of depth sensors is examined. In particular, we investigate how the redundant and complementary multi-view information, including the temporal context, can be jointly leveraged to improve the detection performance. We recast th...

Deskribapen osoa

Gorde:
Xehetasun bibliografikoak
Egile nagusia: Wetzel, Johannes (auth)
Formatua: Baliabide elektronikoa Liburu kapitulua
Hizkuntza:ingelesa
Argitaratua: Karlsruhe KIT Scientific Publishing 2022
Saila:Forschungsberichte aus der Industriellen Informationstechnik 25
Gaiak:
Sarrera elektronikoa:OAPEN Library: download the publication
OAPEN Library: description of the publication
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!
Deskribapena
Gaia:In this work, the task of wide-area indoor people detection in a network of depth sensors is examined. In particular, we investigate how the redundant and complementary multi-view information, including the temporal context, can be jointly leveraged to improve the detection performance. We recast the problem of multi-view people detection in overlapping depth images as an inverse problem and present a generative probabilistic framework to jointly exploit the temporal multi-view image evidence.
Deskribapen fisikoa:1 electronic resource (204 p.)
ISBN:KSP/1000144094
9783731511779
Sartu:Open Access