The Material Theory of Induction

The fundamental burden of a theory of inductive inference is to determine which are the good inductive inferences or relations of inductive support and why it is that they are so. The traditional approach is modeled on that taken in accounts of deductive inference. It seeks universally applicable sc...

Full description

Saved in:
Bibliographic Details
Main Author: Norton, John D. (auth)
Format: Electronic Book Chapter
Language:English
Published: Calgary University of Calgary Press 2021
Series:BSPS Open 1
Subjects:
Online Access:OAPEN Library: download the publication
OAPEN Library: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 oapen_2024_20_500_12657_57690
005 20220801
003 oapen
006 m o d
007 cr|mn|---annan
008 20220801s2021 xx |||||o ||| 0|eng d
020 |a 9781773852546 
020 |a 9781773852539 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a PDA  |2 bicssc 
072 7 |a PDX  |2 bicssc 
072 7 |a HPL  |2 bicssc 
100 1 |a Norton, John D.  |4 auth 
245 1 0 |a The Material Theory of Induction 
260 |a Calgary  |b University of Calgary Press  |c 2021 
300 |a 1 electronic resource (680 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a BSPS Open  |v 1 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a The fundamental burden of a theory of inductive inference is to determine which are the good inductive inferences or relations of inductive support and why it is that they are so. The traditional approach is modeled on that taken in accounts of deductive inference. It seeks universally applicable schemas or rules or a single formal device, such as the probability calculus. After millennia of halting efforts, none of these approaches has been unequivocally successful and debates between approaches persist. The Material Theory of Induction identifies the source of these enduring problems in the assumption taken at the outset: that inductive inference can be accommodated by a single formal account with universal applicability. Instead, it argues that that there is no single, universally applicable formal account. Rather, each domain has an inductive logic native to it.The content of that logic and where it can be applied are determined by the facts prevailing in that domain. Paying close attention to how inductive inference is conducted in science and copiously illustrated with real-world examples, The Material Theory of Induction will initiate a new tradition in the analysis of inductive inference. 
540 |a Creative Commons  |f by-nc-nd/4.0/  |2 cc  |4 http://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
650 7 |a Philosophy of science  |2 bicssc 
650 7 |a History of science  |2 bicssc 
650 7 |a Philosophy: logic  |2 bicssc 
653 |a inductive inference 
653 |a inductive support 
653 |a deductive inference 
653 |a theory of induction 
653 |a material theory of induction 
653 |a new theory of induction 
653 |a history of science 
653 |a philosophy of science 
653 |a probability 
653 |a chance 
653 |a study of chance 
653 |a study of probability 
653 |a inductive logic 
653 |a deductive logic 
653 |a books about philosophy of science 
653 |a books about science 
653 |a study of science 
653 |a books for scientists 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/id/8c13a3cb-f5e1-419b-836d-a8dc75f02652/9781773852546.pdf  |7 0  |z OAPEN Library: download the publication 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/handle/20.500.12657/57690  |7 0  |z OAPEN Library: description of the publication