Chapter Supporting decision-makers in healthcare domain. A comparative study of two interpretative proposals for Random Forests
The growing success of Machine Learning (ML) is making significant improvements to predictive models, facilitating their integration in various application fields, especially the healthcare context. However, it still has limitations and drawbacks, such as the lack of interpretability which does not...
Kaydedildi:
Yazar: | Aria, Massimo (auth) |
---|---|
Diğer Yazarlar: | Cuccurullo, Corrado (auth), Gnasso, Agostino (auth) |
Materyal Türü: | Elektronik Kitap Bölümü |
Dil: | İngilizce |
Baskı/Yayın Bilgisi: |
Florence
Firenze University Press
2021
|
Seri Bilgileri: | Proceedings e report
132 |
Konular: | |
Online Erişim: | OAPEN Library: download the publication OAPEN Library: description of the publication |
Etiketler: |
Etiketle
Etiket eklenmemiş, İlk siz ekleyin!
|
Benzer Materyaller
-
Chapter Supporting decision-makers in healthcare domain. A comparative study of two interpretative proposals for Random Forests
Yazar:: Aria, Massimo
Baskı/Yayın Bilgisi: (2021) -
Chapter Supporting decision-makers in healthcare domain. A comparative study of two interpretative proposals for Random Forests
Yazar:: Aria, Massimo
Baskı/Yayın Bilgisi: (2021) -
Chapter Supporting decision-makers in healthcare domain. A comparative study of two interpretative proposals for Random Forests
Yazar:: Aria, Massimo
Baskı/Yayın Bilgisi: (2021) -
Chapter Effect of Climate Change and anthropogenic pressures on the European eel Anguilla anguilla from RAMSAR Wetland Ichkeul Lake: prediction from the Random Forest model
Yazar:: Toujani, Rachid
Baskı/Yayın Bilgisi: (2022) -
Chapter Effect of Climate Change and anthropogenic pressures on the European eel Anguilla anguilla from RAMSAR Wetland Ichkeul Lake: prediction from the Random Forest model
Yazar:: Toujani, Rachid
Baskı/Yayın Bilgisi: (2022)