Discovery in Physics
Volume 2 covers knowledge discovery in particle and astroparticle physics. Instruments gather petabytes of data and machine learning is used to process the vast amounts of data and to detect relevant examples efficiently. The physical knowledge is encoded in simulations used to train the machine lea...
Bewaard in:
Andere auteurs: | , |
---|---|
Formaat: | Elektronisch Hoofdstuk |
Taal: | Engels |
Gepubliceerd in: |
Berlin/Boston
De Gruyter
2022
|
Reeks: | De Gruyter STEM
Volume 2 |
Onderwerpen: | |
Online toegang: | OAPEN Library: download the publication OAPEN Library: description of the publication |
Tags: |
Voeg label toe
Geen labels, Wees de eerste die dit record labelt!
|
MARC
LEADER | 00000naaaa2200000uu 4500 | ||
---|---|---|---|
001 | oapen_2024_20_500_12657_61139 | ||
005 | 20230130 | ||
003 | oapen | ||
006 | m o d | ||
007 | cr|mn|---annan | ||
008 | 20230130s2022 xx |||||o ||| 0|eng d | ||
020 | |a 9783110785968 | ||
020 | |a 9783110785968 | ||
020 | |a 9783110785951 | ||
020 | |a 9783110786132 | ||
040 | |a oapen |c oapen | ||
024 | 7 | |a 10.1515/9783110785968 |c doi | |
041 | 0 | |a eng | |
042 | |a dc | ||
072 | 7 | |a PN |2 bicssc | |
072 | 7 | |a UMB |2 bicssc | |
072 | 7 | |a UN |2 bicssc | |
072 | 7 | |a UT |2 bicssc | |
072 | 7 | |a UYQ |2 bicssc | |
100 | 1 | |a Morik, Katharina |4 edt | |
700 | 1 | |a Rhode, Wolfgang |4 edt | |
700 | 1 | |a Morik, Katharina |4 oth | |
700 | 1 | |a Rhode, Wolfgang |4 oth | |
245 | 1 | 0 | |a Discovery in Physics |
260 | |a Berlin/Boston |b De Gruyter |c 2022 | ||
300 | |a 1 electronic resource (349 p.) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a De Gruyter STEM |v Volume 2 | |
506 | 0 | |a Open Access |2 star |f Unrestricted online access | |
520 | |a Volume 2 covers knowledge discovery in particle and astroparticle physics. Instruments gather petabytes of data and machine learning is used to process the vast amounts of data and to detect relevant examples efficiently. The physical knowledge is encoded in simulations used to train the machine learning models. The interpretation of the learned models serves to expand the physical knowledge resulting in a cycle of theory enhancement. | ||
540 | |a Creative Commons |f https://creativecommons.org/licenses/by/4.0/ |2 cc |4 https://creativecommons.org/licenses/by/4.0/ | ||
546 | |a English | ||
650 | 7 | |a Chemistry |2 bicssc | |
650 | 7 | |a Algorithms & data structures |2 bicssc | |
650 | 7 | |a Databases |2 bicssc | |
650 | 7 | |a Computer networking & communications |2 bicssc | |
650 | 7 | |a Artificial intelligence |2 bicssc | |
653 | |a Resource-Constrained Data Analysis | ||
653 | |a Resource-Aware Machine Learning | ||
653 | |a Embedded Systems and Machine Learning | ||
653 | |a Big Data and Machine Learning | ||
653 | |a Artificial Intelligence | ||
653 | |a Highly Distributed Data | ||
653 | |a ML on Small devices Data mining for Ubiquitous System | ||
653 | |a Software Cyber-physical systems | ||
653 | |a Machine learning in high-energy physics | ||
653 | |a Machine learning for knowledge discovery | ||
856 | 4 | 0 | |a www.oapen.org |u https://library.oapen.org/bitstream/id/17851dcd-a9b7-486e-9139-5f888da0ea9d/9783110785968.pdf |7 0 |z OAPEN Library: download the publication |
856 | 4 | 0 | |a www.oapen.org |u https://library.oapen.org/handle/20.500.12657/61139 |7 0 |z OAPEN Library: description of the publication |