Number Fields

Number Fields is a textbook for algebraic number theory. It grew out of lecture notes of master courses taught by the author at Radboud University, the Netherlands, over a period of more than four decades. It is self-contained in the sense that it uses only mathematics of a bachelor level, including...

Volledige beschrijving

Bewaard in:
Bibliografische gegevens
Hoofdauteur: Keune, Frans (auth)
Formaat: Elektronisch Hoofdstuk
Taal:Engels
Gepubliceerd in: Nijmegen, the Netherlands Radboud University Press 2023
Onderwerpen:
Online toegang:OAPEN Library: download the publication
OAPEN Library: description of the publication
Tags: Voeg label toe
Geen labels, Wees de eerste die dit record labelt!

MARC

LEADER 00000naaaa2200000uu 4500
001 oapen_2024_20_500_12657_62284
005 20230406
003 oapen
006 m o d
007 cr|mn|---annan
008 20230406s2023 xx |||||o ||| 0|eng d
020 |a IPVU4488 
040 |a oapen  |c oapen 
024 7 |a 10.54195/IPVU4488  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a PB  |2 bicssc 
100 1 |a Keune, Frans  |4 auth 
245 1 0 |a Number Fields 
260 |a Nijmegen, the Netherlands  |b Radboud University Press  |c 2023 
300 |a 1 electronic resource (587 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Number Fields is a textbook for algebraic number theory. It grew out of lecture notes of master courses taught by the author at Radboud University, the Netherlands, over a period of more than four decades. It is self-contained in the sense that it uses only mathematics of a bachelor level, including some Galois theory. Part I of the book contains topics in basic algebraic number theory as they may be presented in a beginning master course on algebraic number theory. It includes the classification of abelian number fields by groups of Dirichlet characters. Class field theory is treated in Part II: the more advanced theory of abelian extensions of number fields in general. Full proofs of its main theorems are given using a 'classical' approach to class field theory, which is in a sense a natural continuation of the basic theory as presented in Part I. The classification is formulated in terms of generalized Dirichlet characters. This 'ideal-theoretic' version of class field theory dates from the first half of the twentieth century. In this book, it is described in modern mathematical language. Another approach, the 'idèlic version', uses topological algebra and group cohomology and originated halfway the last century. The last two chapters provide the connection to this more advanced idèlic version of class field theory. The book focuses on the abstract theory and contains many examples and exercises. For quadratic number fields algorithms are given for their class groups and, in the real case, for the fundamental unit. New concepts are introduced at the moment it makes a real difference to have them available. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
650 7 |a Mathematics  |2 bicssc 
653 |a Galois theory 
653 |a Idèlic version of class field theory 
653 |a Ideal-theoretic version of class field theory 
653 |a Abelian number fields 
653 |a Class Field Theory 
653 |a Algebraic Number Theory 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/id/35ae2ad8-672b-4bbf-ae41-b22c756d13da/9789493296039.pdf  |7 0  |z OAPEN Library: download the publication 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/handle/20.500.12657/62284  |7 0  |z OAPEN Library: description of the publication