Deep Reinforcement Learning zur Steigerung von Energieeffizienz und Pünktlichkeit von Straßenbahnen
This work investigates how the energy efficiency and punctuality of streetcars can be increased by using AI. The AI is trained on two scenarios at three traffic times each. The determined driving profiles are compared with those of drivers from regular passenger operation as well as with a theoretic...
Saved in:
Main Author: | |
---|---|
Format: | Electronic Book Chapter |
Published: |
KIT Scientific Publishing
2023
|
Series: | Karlsruher Schriftenreihe Fahrzeugsystemtechnik
20 |
Subjects: | |
Online Access: | OAPEN Library: download the publication OAPEN Library: description of the publication |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
MARC
LEADER | 00000naaaa2200000uu 4500 | ||
---|---|---|---|
001 | oapen_2024_20_500_12657_62535 | ||
005 | 20230424 | ||
003 | oapen | ||
006 | m o d | ||
007 | cr|mn|---annan | ||
008 | 20230424s2023 xx |||||o ||| 0|deu d | ||
020 | |a KSP/1000155565 | ||
040 | |a oapen |c oapen | ||
024 | 7 | |a 10.5445/KSP/1000155565 |c doi | |
041 | 0 | |a deu | |
042 | |a dc | ||
072 | 7 | |a TG |2 bicssc | |
100 | 1 | |a Tesar, Markus |4 auth | |
245 | 1 | 0 | |a Deep Reinforcement Learning zur Steigerung von Energieeffizienz und Pünktlichkeit von Straßenbahnen |
260 | |b KIT Scientific Publishing |c 2023 | ||
300 | |a 1 electronic resource (280 p.) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Karlsruher Schriftenreihe Fahrzeugsystemtechnik |v 20 | |
506 | 0 | |a Open Access |2 star |f Unrestricted online access | |
520 | |a This work investigates how the energy efficiency and punctuality of streetcars can be increased by using AI. The AI is trained on two scenarios at three traffic times each. The determined driving profiles are compared with those of drivers from regular passenger operation as well as with a theoretical optimum determined by Dynamic Programming. In addition, transfer learning capabilities of the AI will be investigated. | ||
540 | |a Creative Commons |f https://creativecommons.org/licenses/by-sa/4.0/ |2 cc |4 https://creativecommons.org/licenses/by-sa/4.0/ | ||
546 | |a German | ||
650 | 7 | |a Mechanical engineering & materials |2 bicssc | |
653 | |a Straßenbahn; KI; Energie; effizienz; Pünktlichkeit; Modellierung; Light Rail; AI; Energy Efficiency; Punctuality; Modelling | ||
856 | 4 | 0 | |a www.oapen.org |u https://library.oapen.org/bitstream/id/befb3b30-628d-481c-9391-985cc14ff017/deep-reinforcement-learning-zur-steigerung-von-energieeffizienz-und-punktlichkeit-von-strassenbahnen.pdf |7 0 |z OAPEN Library: download the publication |
856 | 4 | 0 | |a www.oapen.org |u https://library.oapen.org/handle/20.500.12657/62535 |7 0 |z OAPEN Library: description of the publication |