Entwicklung einer Methode zum Einsatz von Reinforcement Learning für die dynamische Fertigungsdurchlaufsteuerung

This work aims to develop a method that can reschedule the matrix production in the case of a disruption. For this purpose, different artificial intelligence methods are combined in a novel way. The developed method is validated on a theoretical and a real scheduling case.

Saved in:
Bibliographic Details
Main Author: Lohse, Oliver (auth)
Format: Electronic Book Chapter
Published: KIT Scientific Publishing 2023
Series:Reihe Informationsmanagement im Engineering Karlsruhe 25
Subjects:
Online Access:OAPEN Library: download the publication
OAPEN Library: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 oapen_2024_20_500_12657_62536
005 20230424
003 oapen
006 m o d
007 cr|mn|---annan
008 20230424s2023 xx |||||o ||| 0|deu d
020 |a KSP/1000156002 
040 |a oapen  |c oapen 
024 7 |a 10.5445/KSP/1000156002  |c doi 
041 0 |a deu 
042 |a dc 
072 7 |a TG  |2 bicssc 
100 1 |a Lohse, Oliver  |4 auth 
245 1 0 |a Entwicklung einer Methode zum Einsatz von Reinforcement Learning für die dynamische Fertigungsdurchlaufsteuerung 
260 |b KIT Scientific Publishing  |c 2023 
300 |a 1 electronic resource (208 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Reihe Informationsmanagement im Engineering Karlsruhe  |v 25 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a This work aims to develop a method that can reschedule the matrix production in the case of a disruption. For this purpose, different artificial intelligence methods are combined in a novel way. The developed method is validated on a theoretical and a real scheduling case. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-sa/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-sa/4.0/ 
546 |a German 
650 7 |a Mechanical engineering & materials  |2 bicssc 
653 |a Produktionssteuerung; Reinforcement Learning; Künstliche Intelligenz; Terminierung; Production control; artificial intelligence; scheduling 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/id/27a304e6-a9f2-45fd-b502-db2f36f050e0/entwicklung-einer-methode-zum-einsatz-von-reinforcement-learning-fur-die-dynamische-fertigungsdurchlaufsteuerung.pdf  |7 0  |z OAPEN Library: download the publication 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/handle/20.500.12657/62536  |7 0  |z OAPEN Library: description of the publication