Self-Learning Longitudinal Control for On-Road Vehicles
Reinforcement Learning is a promising tool to automate controller tuning. However, significant extensions are required for real-world applications to enable fast and robust learning. This work proposes several additions to the state of the art and proves their capability in a series of real world ex...
Bewaard in:
Hoofdauteur: | |
---|---|
Formaat: | Elektronisch Hoofdstuk |
Taal: | Engels |
Gepubliceerd in: |
KIT Scientific Publishing
2023
|
Reeks: | Karlsruher Beiträge zur Regelungs- und Steuerungstechnik
20 |
Onderwerpen: | |
Online toegang: | OAPEN Library: download the publication OAPEN Library: description of the publication |
Tags: |
Voeg label toe
Geen labels, Wees de eerste die dit record labelt!
|
Samenvatting: | Reinforcement Learning is a promising tool to automate controller tuning. However, significant extensions are required for real-world applications to enable fast and robust learning. This work proposes several additions to the state of the art and proves their capability in a series of real world experiments. |
---|---|
Fysieke beschrijving: | 1 electronic resource (158 p.) |
ISBN: | KSP/1000156966 |
Toegang: | Open Access |