Self-Learning Longitudinal Control for On-Road Vehicles

Reinforcement Learning is a promising tool to automate controller tuning. However, significant extensions are required for real-world applications to enable fast and robust learning. This work proposes several additions to the state of the art and proves their capability in a series of real world ex...

Volledige beschrijving

Bewaard in:
Bibliografische gegevens
Hoofdauteur: Puccetti, Luca (auth)
Formaat: Elektronisch Hoofdstuk
Taal:Engels
Gepubliceerd in: KIT Scientific Publishing 2023
Reeks:Karlsruher Beiträge zur Regelungs- und Steuerungstechnik 20
Onderwerpen:
Online toegang:OAPEN Library: download the publication
OAPEN Library: description of the publication
Tags: Voeg label toe
Geen labels, Wees de eerste die dit record labelt!
Omschrijving
Samenvatting:Reinforcement Learning is a promising tool to automate controller tuning. However, significant extensions are required for real-world applications to enable fast and robust learning. This work proposes several additions to the state of the art and proves their capability in a series of real world experiments.
Fysieke beschrijving:1 electronic resource (158 p.)
ISBN:KSP/1000156966
Toegang:Open Access