Chapter A paradata-driven statistical approach to improve fieldwork monitoring: the case of the Non-Profit Institutions census

A complex process requires relevant information on the crucial nodes of the process itself to make more effective decisions. This is the case for large complex surveys where among the several causes of wrong or inappropriate interviewers' behaviors only the crucial ones have to be identified an...

Full description

Saved in:
Bibliographic Details
Main Author: Nuccitelli, Alessandra (auth)
Other Authors: Arlotta, Luigi (auth), Giacummo, Maura (auth), Fazzi, Gabriella (auth), Murgia, Manuela (auth), Rossetti , Francesca (auth), Parisi, Valentino (auth), Piergiovanni, Roberta (auth)
Format: Electronic Book Chapter
Language:English
Published: Florence Firenze University Press, Genova University Press 2023
Series:Proceedings e report 134
Subjects:
Online Access:OAPEN Library: download the publication
OAPEN Library: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 oapen_2024_20_500_12657_74925
005 20230803
003 oapen
006 m o d
007 cr|mn|---annan
008 20230803s2023 xx |||||o ||| 0|eng d
020 |a 979-12-215-0106-3.53 
020 |a 9791221501063 
040 |a oapen  |c oapen 
024 7 |a 10.36253/979-12-215-0106-3.53  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a J  |2 bicssc 
100 1 |a Nuccitelli, Alessandra  |4 auth 
700 1 |a Arlotta, Luigi  |4 auth 
700 1 |a Giacummo, Maura  |4 auth 
700 1 |a Fazzi, Gabriella  |4 auth 
700 1 |a Murgia, Manuela  |4 auth 
700 1 |a Rossetti , Francesca   |4 auth 
700 1 |a Parisi, Valentino  |4 auth 
700 1 |a Piergiovanni, Roberta  |4 auth 
245 1 0 |a Chapter A paradata-driven statistical approach to improve fieldwork monitoring: the case of the Non-Profit Institutions census 
260 |a Florence  |b Firenze University Press, Genova University Press  |c 2023 
300 |a 1 electronic resource (6 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Proceedings e report  |v 134 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a A complex process requires relevant information on the crucial nodes of the process itself to make more effective decisions. This is the case for large complex surveys where among the several causes of wrong or inappropriate interviewers' behaviors only the crucial ones have to be identified and corrected to avoid a knock-on effect. An example of such a survey is the Non-Profit Institutions Census (NPIC), for which fieldwork monitoring is improved using a paradata-driven approach based on the use of quality control tools. The complexity of NPIC is not only due to the large amount of units it involves but also to the great variety of unit-typologies: from large and structured institutions to very small associations. Complexity depends also on the different data collection modes and on the wide variety of communication channels. Besides, two questionnaires with different research aims - to assess the quality of statistical registers (short questionnaire) and to collect information (long questionnaire) - contribute to boosting complexity. The use of computer-assisted survey instruments offers the opportunity to automatically record paradata, making it possible to apply statistical procedures that allow for near real-time monitoring. To this end, a set of performance indicators is defined to assess the adequacy and observance of the survey protocols and to uncover any problematic situations that need to be addressed quickly. Once indicators are defined, control charts can be used to display them. Control charts help balance cost and thoroughness of monitoring activities by using statistical principles to differentiate potentially problematic cases from those that vary naturally around a process average. In this way, survey managers can make targeted interventions, without spending time exploring false alarms. The work will describe the experience made with the NPIC and how it can be applied to other Censuses or to any other interviewer-based survey. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Society & social sciences  |2 bicssc 
653 |a computer-assisted survey 
653 |a Non-Profit Institutions Census 
653 |a performance indicators 
773 1 0 |t ASA 2022 Data-Driven Decision Making  |7 nnaa  |o OAPEN Library UUID: 863aa499-dbee-4191-9a14-3b5d5ef9e635 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/id/c4cd46c8-6eef-4319-a395-c0e4e3f41af3/9791221501063-53.pdf  |7 0  |z OAPEN Library: download the publication 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/handle/20.500.12657/74925  |7 0  |z OAPEN Library: description of the publication