Anomaliedetektion in räumlich-zeitlichen Datensätzen

Human support in surveillance tasks is crucial due to the overwhelming amount of sensor data. This work focuses on the development of data fusion methods using the maritime domain as an example. Various anomalies are investigated, evaluated using real vessel traffic data and tested with experts. For...

Full description

Saved in:
Bibliographic Details
Main Author: Anneken, Mathias (auth)
Format: Electronic Book Chapter
Published: KIT Scientific Publishing 2023
Series:Karlsruher Schriften zur Anthropomatik 51
Subjects:
Online Access:OAPEN Library: download the publication
OAPEN Library: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 oapen_2024_20_500_12657_75885
005 20230829
003 oapen
006 m o d
007 cr|mn|---annan
008 20230829s2023 xx |||||o ||| 0|deu d
020 |a KSP/1000158519 
040 |a oapen  |c oapen 
024 7 |a 10.5445/KSP/1000158519  |c doi 
041 0 |a deu 
042 |a dc 
072 7 |a UYAM  |2 bicssc 
100 1 |a Anneken, Mathias  |4 auth 
245 1 0 |a Anomaliedetektion in räumlich-zeitlichen Datensätzen 
260 |b KIT Scientific Publishing  |c 2023 
300 |a 1 electronic resource (264 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Karlsruher Schriften zur Anthropomatik  |v 51 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Human support in surveillance tasks is crucial due to the overwhelming amount of sensor data. This work focuses on the development of data fusion methods using the maritime domain as an example. Various anomalies are investigated, evaluated using real vessel traffic data and tested with experts. For this purpose, situations of interest and anomalies are modelled and evaluated based on different machine learning methods. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a German 
650 7 |a Maths for computer scientists  |2 bicssc 
653 |a spatio-temporal data; situation analysis; anomaly detection; räumlich-zeitliche Daten; Maritime Überwachung; Anomaliedetektion; maritime surveillance; Situationsanalyse; machine learning; Maschinelles Lernen 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/id/535ba5ef-9124-471f-af4c-264503208543/anomaliedetektion-in-raumlich-zeitlichen-datensatzen.pdf  |7 0  |z OAPEN Library: download the publication 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/handle/20.500.12657/75885  |7 0  |z OAPEN Library: description of the publication