Deep material networks for efficient scale-bridging in thermomechanical simulations of solids
We investigate deep material networks (DMN). We lay the mathematical foundation of DMNs and present a novel DMN formulation, which is characterized by a reduced number of degrees of freedom. We present a efficient solution technique for nonlinear DMNs to accelerate complex two-scale simulations with...
Bewaard in:
| Hoofdauteur: | |
|---|---|
| Formaat: | Elektronisch Hoofdstuk |
| Taal: | Engels |
| Gepubliceerd in: |
KIT Scientific Publishing
2023
|
| Reeks: | Schriftenreihe Kontinuumsmechanik im Maschinenbau
26 |
| Onderwerpen: | |
| Online toegang: | OAPEN Library: download the publication OAPEN Library: description of the publication |
| Tags: |
Voeg label toe
Geen labels, Wees de eerste die dit record labelt!
|
MARC
| LEADER | 00000naaaa2200000uu 4500 | ||
|---|---|---|---|
| 001 | oapen_2024_20_500_12657_76126 | ||
| 005 | 20230904 | ||
| 003 | oapen | ||
| 006 | m o d | ||
| 007 | cr|mn|---annan | ||
| 008 | 20230904s2023 xx |||||o ||| 0|eng d | ||
| 020 | |a KSP/1000155688 | ||
| 040 | |a oapen |c oapen | ||
| 024 | 7 | |a 10.5445/KSP/1000155688 |c doi | |
| 041 | 0 | |a eng | |
| 042 | |a dc | ||
| 072 | 7 | |a TG |2 bicssc | |
| 100 | 1 | |a Gajek, Sebastian |4 auth | |
| 245 | 1 | 0 | |a Deep material networks for efficient scale-bridging in thermomechanical simulations of solids |
| 260 | |b KIT Scientific Publishing |c 2023 | ||
| 300 | |a 1 electronic resource (326 p.) | ||
| 336 | |a text |b txt |2 rdacontent | ||
| 337 | |a computer |b c |2 rdamedia | ||
| 338 | |a online resource |b cr |2 rdacarrier | ||
| 490 | 1 | |a Schriftenreihe Kontinuumsmechanik im Maschinenbau |v 26 | |
| 506 | 0 | |a Open Access |2 star |f Unrestricted online access | |
| 520 | |a We investigate deep material networks (DMN). We lay the mathematical foundation of DMNs and present a novel DMN formulation, which is characterized by a reduced number of degrees of freedom. We present a efficient solution technique for nonlinear DMNs to accelerate complex two-scale simulations with minimal computational effort. A new interpolation technique is presented enabling the consideration of fluctuating microstructure characteristics in macroscopic simulations. | ||
| 540 | |a Creative Commons |f https://creativecommons.org/licenses/by-sa/4.0/ |2 cc |4 https://creativecommons.org/licenses/by-sa/4.0/ | ||
| 546 | |a English | ||
| 650 | 7 | |a Mechanical engineering & materials |2 bicssc | |
| 653 | |a deep material networks; data-driven modeling; Two-scale simulations; Deep Material Networks; Datengetriebene Modellierung; Zweiskalensimulationen; micromechanics; Mikromechanik; machine learning; Maschinelles Lernen | ||
| 856 | 4 | 0 | |a www.oapen.org |u https://library.oapen.org/bitstream/id/793134a9-91f7-44a6-b4a2-5e31641bb97a/deep-material-networks-for-efficient-scale-bridging-in-thermomechanical-simulations-of-solids.pdf |7 0 |z OAPEN Library: download the publication |
| 856 | 4 | 0 | |a www.oapen.org |u https://library.oapen.org/handle/20.500.12657/76126 |7 0 |z OAPEN Library: description of the publication |