Deep material networks for efficient scale-bridging in thermomechanical simulations of solids
We investigate deep material networks (DMN). We lay the mathematical foundation of DMNs and present a novel DMN formulation, which is characterized by a reduced number of degrees of freedom. We present a efficient solution technique for nonlinear DMNs to accelerate complex two-scale simulations with...
保存先:
第一著者: | Gajek, Sebastian (auth) |
---|---|
フォーマット: | 電子媒体 図書の章 |
言語: | 英語 |
出版事項: |
KIT Scientific Publishing
2023
|
シリーズ: | Schriftenreihe Kontinuumsmechanik im Maschinenbau
26 |
主題: | |
オンライン・アクセス: | OAPEN Library: download the publication OAPEN Library: description of the publication |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Deep material networks for efficient scale-bridging in thermomechanical simulations of solids
著者:: Gajek, Sebastian
出版事項: (2023) -
Efficient fast Fourier transform-based solvers for computing the thermomechanical behavior of applied materials
著者:: Wicht, Daniel
出版事項: (2022) -
Efficient fast Fourier transform-based solvers for computing the thermomechanical behavior of applied materials
著者:: Wicht, Daniel
出版事項: (2022) -
Proceedings - 31. Workshop Computational Intelligence : Berlin, 25. - 26. November 2021
出版事項: (2021) -
Proceedings - 31. Workshop Computational Intelligence : Berlin, 25. - 26. November 2021
出版事項: (2021)