Spectral Geometry of Graphs

This open access book gives a systematic introduction into the spectral theory of differential operators on metric graphs. Main focus is on the fundamental relations between the spectrum and the geometry of the underlying graph. The book has two central themes: the trace formula and inverse problems...

Full description

Saved in:
Bibliographic Details
Main Author: Kurasov, Pavel (auth)
Format: Electronic Book Chapter
Language:English
Published: Berlin, Heidelberg Springer Nature 2024
Series:Operator Theory: Advances and Applications 293
Subjects:
Online Access:OAPEN Library: download the publication
OAPEN Library: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 oapen_2024_20_500_12657_85092
005 20231113
003 oapen
006 m o d
007 cr|mn|---annan
008 20231113s2024 xx |||||o ||| 0|eng d
020 |a 978-3-662-67872-5 
020 |a 9783662678725 
020 |a 9783662678701 
040 |a oapen  |c oapen 
024 7 |a 10.1007/978-3-662-67872-5  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a UYA  |2 bicssc 
072 7 |a PBKJ  |2 bicssc 
072 7 |a GPFC  |2 bicssc 
072 7 |a PBKQ  |2 bicssc 
100 1 |a Kurasov, Pavel  |4 auth 
245 1 0 |a Spectral Geometry of Graphs 
260 |a Berlin, Heidelberg  |b Springer Nature  |c 2024 
300 |a 1 electronic resource (639 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Operator Theory: Advances and Applications  |v 293 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a This open access book gives a systematic introduction into the spectral theory of differential operators on metric graphs. Main focus is on the fundamental relations between the spectrum and the geometry of the underlying graph. The book has two central themes: the trace formula and inverse problems. The trace formula is relating the spectrum to the set of periodic orbits and is comparable to the celebrated Selberg and Chazarain-Duistermaat-Guillemin-Melrose trace formulas. Unexpectedly this formula allows one to construct non-trivial crystalline measures and Fourier quasicrystals solving one of the long-standing problems in Fourier analysis. The remarkable story of this mathematical odyssey is presented in the first part of the book. To solve the inverse problem for Schrödinger operators on metric graphs the magnetic boundary control method is introduced. Spectral data depending on the magnetic flux allow one to solve the inverse problem in full generality, this means to reconstruct not only the potential on a given graph, but also the underlying graph itself and the vertex conditions. The book provides an excellent example of recent studies where the interplay between different fields like operator theory, algebraic geometry and number theory, leads to unexpected and sound mathematical results. The book is thought as a graduate course book where every chapter is suitable for a separate lecture and includes problems for home studies. Numerous illuminating examples make it easier to understand new concepts and develop the necessary intuition for further studies. ; Self-contained introduction to the theory of quantum graphs First time treatment of inverse problems in detail Numerous examples from physics included Open questions at the end of several chapters 
540 |a Creative Commons  |f by/4.0/  |2 cc  |4 http://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Mathematical theory of computation  |2 bicssc 
650 7 |a Differential calculus & equations  |2 bicssc 
650 7 |a Cybernetics & systems theory  |2 bicssc 
650 7 |a Calculus of variations  |2 bicssc 
653 |a Inverse Problems 
653 |a Quantum Graphs 
653 |a Self-Adjoint Operators 
653 |a Vertex Scattering Matrix 
653 |a Systems Theory 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/id/60683a0e-fe97-416e-a60a-dc08839690df/978-3-662-67872-5.pdf  |7 0  |z OAPEN Library: download the publication 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/handle/20.500.12657/85092  |7 0  |z OAPEN Library: description of the publication