The dispersionless completely integrable heavenly type Hamiltonian flows and their differential-geometric structure

<p>There are reviewed modern investigations devoted to studying nonlinear dispersiveless heavenly type integrable evolutions systems on functional spaces within the modern differential-geometric and algebraic tools. Main accent is done on the loop diffeomorphism group vector fields on the comp...

Полное описание

Сохранить в:
Библиографические подробности
Главные авторы: Oksana E Hentosh (Автор), Yarema A Prykarpatsky (Автор), Alexandr Balinsky (Автор), Anatolij K Prykarpatski (Автор)
Формат:
Опубликовано: Annals of Mathematics and Physics - Peertechz Publications, 2019-08-28.
Предметы:
Online-ссылка:Connect to this object online.
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!

MARC

LEADER 00000 am a22000003u 4500
001 peertech__10_17352_amp_000006
042 |a dc 
100 1 0 |a Oksana E Hentosh  |e author 
700 1 0 |a  Yarema A Prykarpatsky  |e author 
700 1 0 |a  Alexandr Balinsky  |e author 
700 1 0 |a Anatolij K Prykarpatski  |e author 
245 0 0 |a The dispersionless completely integrable heavenly type Hamiltonian flows and their differential-geometric structure 
260 |b Annals of Mathematics and Physics - Peertechz Publications,   |c 2019-08-28. 
520 |a <p>There are reviewed modern investigations devoted to studying nonlinear dispersiveless heavenly type integrable evolutions systems on functional spaces within the modern differential-geometric and algebraic tools. Main accent is done on the loop diffeomorphism group vector fields on the complexifi ed torus and the related Lie-algebraic structures, generating dispersionless heavenly type integrable systems. As examples, we analyzed the Einstein-Weyl metric equation, the modifi ed Einstein-Weyl metric equation, the Dunajski heavenly equation system, the fi rst and second conformal structure generating equations, the inverse first Shabat reduction heavenly equation, the first and modifi ed Plebański heavenly equations, the Husain heavenly equation, the general Monge equation and the classical Korteweg-de Vries dispersive dynamical system. We also investigated geometric structures of a class of spatially one-dimensional completely integrable Chaplygin type hydrodynamic systems, which proved to be deeply connected with differential systems on the complexifi ed torus and the related diffeomorphism group orbits on them.</p> 
540 |a Copyright © Oksana E Hentosh et al. 
546 |a en 
655 7 |a Research Article  |2 local 
856 4 1 |u https://doi.org/10.17352/amp.000006  |z Connect to this object online.