Poisson structures on (non)associative noncommutative algebras and integrable Kontsevich type Hamiltonian systems
<p>We have revisited the classical Poisson manifold approach, closely related to construction of Hamiltonian operators, generated by nonassociative and noncommutative algebras. In particular, we presented its natural and simple generalization allowing effectively to describe a wide class of La...
Sábháilte in:
Príomhchruthaitheoirí: | , , |
---|---|
Formáid: | LEABHAR |
Foilsithe / Cruthaithe: |
Annals of Mathematics and Physics - Peertechz Publications,
2020-01-30.
|
Ábhair: | |
Rochtain ar líne: | Connect to this object online. |
Clibeanna: |
Cuir clib leis
Níl clibeanna ann, Bí ar an gcéad duine le clib a chur leis an taifead seo!
|
MARC
LEADER | 00000 am a22000003u 4500 | ||
---|---|---|---|
001 | peertech__10_17352_amp_000010 | ||
042 | |a dc | ||
100 | 1 | 0 | |a Oksana E Hentosh |e author |
700 | 1 | 0 | |a Alexander A Balinsky |e author |
700 | 1 | 0 | |a Anatolij K Prykarpatski |e author |
245 | 0 | 0 | |a Poisson structures on (non)associative noncommutative algebras and integrable Kontsevich type Hamiltonian systems |
260 | |b Annals of Mathematics and Physics - Peertechz Publications, |c 2020-01-30. | ||
520 | |a <p>We have revisited the classical Poisson manifold approach, closely related to construction of Hamiltonian operators, generated by nonassociative and noncommutative algebras. In particular, we presented its natural and simple generalization allowing effectively to describe a wide class of Lax type integrable nonlinear Kontsevich type Hamiltonian systems on associative noncommutative algebras.</p> | ||
540 | |a Copyright © Oksana E Hentosh et al. | ||
546 | |a en | ||
655 | 7 | |a Review Article |2 local | |
856 | 4 | 1 | |u https://doi.org/10.17352/amp.000010 |z Connect to this object online. |