Poisson structures on (non)associative noncommutative algebras and integrable Kontsevich type Hamiltonian systems

<p>We have revisited the classical Poisson manifold approach, closely related to construction of Hamiltonian operators, generated by nonassociative and noncommutative algebras. In particular, we presented its natural and simple generalization allowing effectively to describe a wide class of La...

Cur síos iomlán

Sábháilte in:
Sonraí bibleagrafaíochta
Príomhchruthaitheoirí: Oksana E Hentosh (Údar), Alexander A Balinsky (Údar), Anatolij K Prykarpatski (Údar)
Formáid: LEABHAR
Foilsithe / Cruthaithe: Annals of Mathematics and Physics - Peertechz Publications, 2020-01-30.
Ábhair:
Rochtain ar líne:Connect to this object online.
Clibeanna: Cuir clib leis
Níl clibeanna ann, Bí ar an gcéad duine le clib a chur leis an taifead seo!

MARC

LEADER 00000 am a22000003u 4500
001 peertech__10_17352_amp_000010
042 |a dc 
100 1 0 |a Oksana E Hentosh  |e author 
700 1 0 |a  Alexander A Balinsky  |e author 
700 1 0 |a Anatolij K Prykarpatski  |e author 
245 0 0 |a Poisson structures on (non)associative noncommutative algebras and integrable Kontsevich type Hamiltonian systems 
260 |b Annals of Mathematics and Physics - Peertechz Publications,   |c 2020-01-30. 
520 |a <p>We have revisited the classical Poisson manifold approach, closely related to construction of Hamiltonian operators, generated by nonassociative and noncommutative algebras. In particular, we presented its natural and simple generalization allowing effectively to describe a wide class of Lax type integrable nonlinear Kontsevich type Hamiltonian systems on associative noncommutative algebras.</p> 
540 |a Copyright © Oksana E Hentosh et al. 
546 |a en 
655 7 |a Review Article  |2 local 
856 4 1 |u https://doi.org/10.17352/amp.000010  |z Connect to this object online.