On the Bogolubov's chain of kinetic equations, the invariant subspaces and the corresponding Dirac type reduction

<p>We study a special class of dynamical systems of Boltzmann-Bogolubov and Boltzmann-Vlasov type on infinite dimensional functional manifolds modeling kinetic processes in manyparticle media. Based on geometric properties of the manyparticle phase space we succeded in dual analysing of the in...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yarema A Prykarpatsky (Autor), Radoslaw Kycia (Autor), Anatolij K Prykarpatski (Autor)
Formato: Libro
Publicado: Annals of Mathematics and Physics - Peertechz Publications, 2021-10-14.
Materias:
Acceso en línea:Connect to this object online.
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000 am a22000003u 4500
001 peertech__10_17352_amp_000026
042 |a dc 
100 1 0 |a Yarema A Prykarpatsky  |e author 
700 1 0 |a  Radoslaw Kycia  |e author 
700 1 0 |a Anatolij K Prykarpatski  |e author 
245 0 0 |a On the Bogolubov's chain of kinetic equations, the invariant subspaces and the corresponding Dirac type reduction 
260 |b Annals of Mathematics and Physics - Peertechz Publications,   |c 2021-10-14. 
520 |a <p>We study a special class of dynamical systems of Boltzmann-Bogolubov and Boltzmann-Vlasov type on infinite dimensional functional manifolds modeling kinetic processes in manyparticle media. Based on geometric properties of the manyparticle phase space we succeded in dual analysing of the infinite Bogolubov hierarchy of manyparticle distribution functions and their Hamiltonian structure. Moreover, we proposed a new approach to invariant reducing the Bogolubov hierarchy on a suitably chosen correlation function constraint and deducing the related modified Boltzmann-Bogolubov kinetic equations on a finite set of multiparticle distribution functions. </p> 
540 |a Copyright © Yarema A Prykarpatsky et al. 
546 |a en 
655 7 |a Review Article  |2 local 
856 4 1 |u https://doi.org/10.17352/amp.000026  |z Connect to this object online.